THE STUDY OF NANOSTRUCTURED ANATASE COATINGS ON THE SURFACE OF RUTILE
https://doi.org/10.17073/1997-308X-2018-1-51-58
Abstract
Nanosized titanium dioxide allows solving complex engineering problems. One of such tasks is the creation of materials and coatings that reduce the likelihood of nosocomial infections on the surface of orthopedic structures including implant systems. The paper presents the results of the Raman spectroscopy, X-ray diffraction analysis and scanning electron microscopy of anatase ceramic coatings deposited by sol-gel technology on a sintered material based on a nanosized titanium dioxide powder (rutile modification). The resulting coating has a complex layered structure, which is almost completely represented by titanium dioxide in the anatase phase according to the Raman spectroscopy data. The simultaneous existence of both phases in the coating was recorded. The identification of rutile on diffractograms seems to be due to the fact that modified peak intensity rutile is mainly formed during the first stages of coating application on the polycrystalline rutile surface. The fact that non-stoichiometric phases also present in the diffractograms suggests that coating phase composition is not the same in thickness and is represented by a gradual layerwise transition from rutile to anatase. The coating thickness is 60 ± 15 μm. The coating is represented by lamellar blocks of various sizes. The thickness of a single plate in the coating is 60–80 nm. The developed technique makes it possible to apply the anatase coating not only on samples of titanium dioxide ceramics but also on the surface of titanium implants with the preliminary formation of a titanium dioxide layer in the form of rutile on the metal surface. Experiments on the study of antibacterial properties and morphological characteristics of bone tissue in contact with the implant were carried out at the Department of Prosthetic Dentistry at the PSMU.
About the Authors
S. E. PorozovaRussian Federation
Dr. Sci. (Tech.), prof., Department «Materials, technology and design of machines» of the Perm National Research Polytechnic University (PNRPU)
614990, Russia, Perm, Komsomol’skii pr., 29
senior researcher of the Center of Powder Material Science PNRPU
614013, Russia, Perm, Professor Pozdeev str., 6
A. A. Gurov
Russian Federation
postgraduate student, Department «Materials, technology and design of machines» of the PNRPU, senior researcher of the Center of Powder Material Science PNRPU
O. Yu. Kamenschikov
Russian Federation
researcher of the Laboratory of electronic microscopy of the Perm State National Research University
614068, Russia, Perm, Henkel str., 4
O. A. Shuliatnikova
Russian Federation
Dr. Sci. (Med.), associate prof. of the Department of prosthetic dentistry of State Budgetary Institution of the Perm State Medical University n.a. acad. E.A. Wagner (PSMU)
614990, Russia, Perm, Petropavlovskaya str., 26
G. I. Rogozhnikov
Russian Federation
Dr. Sci. (Med.), prof. of the Department of рrosthetic dentistry of State Budgetary Institution of the PSMU
References
1. Song H., Qiu X., Li F. Effect of heat treatment on the performance of TiO2 Pt/CNT catalysts for methanol electro- oxidation. Electrochim. Acta. 2008. Vol. 53. P. 3708 — 3713. DOI:10.1016/j.electacta.2007.11.080.
2. Mikhailova A.M., Lyasnikov V.N. Dental’nye implantaty i superionnyi effect [Dental implants and superionic effect]. Novoe v stomatologii. 1999. No. 2. P. 13—23.
3. Fefelov A.V. Kliniko-eksperimental’noe obosnovanie primeneniya implantatov iz poristogo nikelida titana dlya zubnogo protezirovaniya [Clinico-experimental substantiation of the use of implants from porous nickel titanium for dental prosthetics]: Abstract of the dissertation of PhD. Omsk: Omskaya gos. meditsinskaya akademiya, 1995.
4. Chen X., Mao S.S. Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem. Rev. 2007. Vol. 107. No. 7. Р. 2891—2959.
5. Lozinskaya E.F., Nikolaeva T.V., Shustova Yu.V. Opredelenie KhPKK2Cr2O7 vod s ispol’zovaniem v kachestve katalizatora nanodispersnogo dioksida titana. In: ELPIT 2011. Ekologiya i bezopasnost’ zhiznedeyatel’nosti promyshlenno- transportnykh kompleksov: Sbornik trudov III Mezhdunar. ekolog. kongressa [Determination HPKK2Cr2O7 water using as a catalyst nanosized titanium dioxide. In: ELPIT 2011. Ecology and life safety of industrial-transport complexes: Collection of works III Intern. ecologist. congress (Togliatti-Samara, Russia, 21—25 Sept. 2011)]. Tol’yatti: TGU, 2011. Vol. 4. P. 176—181.
6. Thompson T.L., Yates J.T. Surface science studies of the photoactivation of TiO2 — new photochemical processes. Chem. Rev. 2006. Vol. 106. No. 10. P. 4428—4453. DOI: 10.1021/cr050172k.
7. Pankhurst Q.A., Connolly J., Jones S.K., Dobson J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 2003. No. 36. Р. 167—181.
8. Cromer D.T., Herrington K. The structures of anatase and rutile. J. Am. Chem. Soc. 1955. Vol. 77. No. 18. Р. 4708—4709.
9. Mo S., Ching W. Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase and brookite. Phys. Rev. B. 1995. Vol. 51. No. 19. Р. 13023 —13032. DOI: 0163-1829/95/51(19)/13023(10).
10. Ushakov R.V., Tsarev V.N. Mikroflora polosti rta i ee znachenie v razvitii stomatologicheskikh zabolevanii [Microflora of the oral cavity and its importance in the development of dental diseases]. Stomatologiya dlya vsekh. 1998. No. 3. P. 22—26.
11. Leonhard A., Olsson J., Dahlen G. Bacterial colonozation on titanium, hy- droxyapatite, and amalgam surfaces in vivo. J. Dent. Res. 1995. Vol. 74 (9). Р. 1607—12.
12. Cho D.G., Kim С.H. Lee B.K., Cho S.H. Comparison of antibiotic resistance of blood culture strains and saprophytic isolates in the presence of biofilms, formed by intercellular adhesion (ica) gene cluster in Staphylococcus epidermidis. J. Microbiol. Biotechnol. 2005. Vol. 15. Р. 728—733.
13. Kiem S., Oh W.S., Peck K.R., Lee N.Y., Lee J.Y., Song J.-H., Hwang E.S., Kim E.- C., Cha C.Y., Choe K.-W. Phase variation of biofilm formation in Staphylococcus aureus by IS256 insertion and its impact on the capacity adhering to polyurethane surface. J. Korean Med. Sci. 2004. Vol. 19 (6). P. 779—782. DOI: 10.3346/jkms.2004.19.6.779.
14. Kalamkarov A.E., Savvidi K.G., Kostin I.O. Osnovnye zakonomernosti vozniknoveniya patologicheskikh izmenenii v kostnoi tkani pri ortopedicheskom lechenii patsientov s ispol’zovaniem dental’nykh vnutrikostnykh implantatov [The main regularities of the appearance of pathological changes in bone tissue during orthopedic treatment of patients with the use of dental intraosseous implants]. Institut stomatologii. 2014. No. 2 (63). P. 45—48.
15. Yaremenko A.I., Kotenko M.V., Meisner S.N., Razdorskii V.V. Analiz oslozhnenii dental’noi implantatsii [Analysis of complications of dental implantation]. Institut stomatologii. 2015. No. 2 (67). P. 46—50.
16. Andersson O.H., Lui G., Kangasniemi K., Juhanoja J. Evaluation of the acceptance of glass in bone. J. Mater. Sci.: Mater. Medicine. 1992. Vol. 3. Р. 145—150.
17. Sukhorukova I.V., Sheveiko A.N., Shtanskii D.V. Vliyanie sostava i sherokhovatosti poverkhnosti pokrytiya TiCaPCON—Ag na kinetiku vykhoda Ag v fiziologicheskii rastvor [Effect of the composition and surface roughness of the TiCaPCON—Ag coating on the kinetics of Ag yield in saline solution]. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya. 2015. No. 3. P. 53—61.
18. Carp O., Huisman C.L., Reller A. Induced reactivity of titanium dioxide. Progr. Solid State Chem. 2004. Vol. 32. P. 33—177.
19. Yoshiya K., Shin-ya M., Hiroshi K., Bunsho O. Design, preparation and characterization of highly active metal oxide photocatalysts. In: Photocatalysis: science and technology. 2002. Eds. M. Kaneko, I. Okura. Berlin: Heidelberg; N.Y.: Springer-Verlag, 29—49.
20. Gurov A.A., Porozova S.E. Poluchenie dioksida titana iz vodno-etanol’nykh rastvorov s polimernymi dobavkami. In: Funktsional’nye materialy i vysokochistye veshchestva: Sbornik materialov III Vserossiiskoi molodezhnoi konferentsii s elementami nauchnoi shkoly [Production of titanium dioxide from water-ethanol solutions with polymer additives. In: Functional materials and high-purity substances: Collection of materials III All-Russian youth conf. with elements of a scientific school (Moscow, May 28—June 1, 2012)]. Moscow: Izd-vo IMET RAN, RKhTU im. D.I. Mendeleeva, 2012. P. 187—188.
21. Gurov A.A., Porozova S.E. Sozdanie polifaznykh keramicheskikh obraztsov na osnove nanorazmernogo dioksida titana [Creation of polyphase ceramic samples based on nanosized titanium dioxide]. Master’s J. 2016. No. 1. P. 36—40.
22. Shulyatnikova O.A., Korobov V.P., Porozova S.E., Rogozhnikov A.G., Lemkina L.M., Rogozhnikov G.I., Gurov A.A., Gridina V.O. Sposob ingibirovaniya obrazovaniya mikrobnoi plenki Staphylococcus epidermidis 33 na poverkhnosti dioksida titana s nanomodifitsirovannoi poverkhnost’yu [Method for inhibiting the formation of a microbial film of Staphylococcus epidermidis 33 on a surface of titanium dioxide with a nanomodified surface]. Problemy stomatologii. 2016. Vol. 12 (3). P. 65—72. DOI: 10.18481/2077-7566-2016-12-3-65-72.
23. Shulyatnikova O.A., Kosareva P.V., Rogozhnikov G.I., Porozova S.E. Morfologicheskie kharakteristiki kostnoi tkani eksperimental’nykh zhivotnykh pri vnutrikostnoi implantatsii titanovykh obraztsov s poverkhnostnoi obrabotkoi nanomodifitsirovannym dioksidom titana (eksperimental’no-laboratornoe issledovanie) [Morphological characteristics of bone tissue of experimental animals with intraosseous implantation of titanium samples with surface treatment with nanomodified titanium dioxide (experimental laboratory tests)]. Ural’skii meditsinskii zhurnal. 2017. No. 1 (145). P. 120—124.
Review
For citations:
Porozova S.E., Gurov A.A., Kamenschikov O.Yu., Shuliatnikova O.A., Rogozhnikov G.I. THE STUDY OF NANOSTRUCTURED ANATASE COATINGS ON THE SURFACE OF RUTILE. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2018;(1):51-58. (In Russ.) https://doi.org/10.17073/1997-308X-2018-1-51-58