Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

PHASE COMPOSITION AND WEAR RESISTANCE OF COATINGS FORMED ON VT6 (TI–6AL–4V) TITANIUM ALLOY BY PLASMA ELECTROLYTIC OXIDATION

https://doi.org/10.17073/1997-308X-2018-1-59-66

Abstract

The study covers the growth kinetics of the coating formed on VT6 titanium alloy by plasma electrolytic oxidation (PEO) at a specified  current density of 10 А/dm2 in the alkali aqueous solution containing 40 g/l of NaAlO2. Coatings with varied thicknesses (30, 80 μm) formed on VT6 titanium alloy was tested for wear resistance by the «pin-on-disc» test using the Hightemperature tribometer and WYKO  NT1100В optical surface profiler. Relationships between phase  coating composition and PEO process duration, as well as wear  resistance are determined. The mechanisms of coating thickness  growth that explain its kinetic features are suggested. The  mechanisms are as follows: 1) migration and diffusion of metal  cations towards the outer phase boundary on sections adjacent to  microdischarges; 2) thermochemical transformation of deposited  ions or polyanions, in particular, tetrahydroxyaluminate; 3) high-temperature oxidation of the metal substrate at the bottom of coating pores where plasma anode microdischarges occurred. The  considered equivalent scheme of the anodic component of the  alternating current at titanium alloy PEO allows us to understand the causes of a significant decrease in the initial coating growth rate at VT6 alloy PEO without anodic voltage reduction. The peculiarity of this scheme is the presence of rheostats since the flow resistance of alternate current components depends largely on the PEO process time. It is shown that the presence of a high-temperature modification (α-Al2O3) in the TiAl2O5 spinel coating makes it possible to increase VT6 alloy wear resistance by almost 6 times when the coating thickness is ~80 μm.

About the Authors

A. G. Rakoch
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Dr. Sci. (Chem.), prof., Department «Metallurgy of steel, new production technologies and protection of metals» (MSNPT&PM), National University of Science and Technology (NUST) «MISIS»

119049, Russia, Moscow, Leninskii pr., 4



Phan Van Truong
National University of Science and Technology (NUST) «MISIS»
Russian Federation
postgraduate student, Department of MSNPT&PM, NUST «MISIS»


A. A. Gladkova
National University of Science and Technology (NUST) «MISIS»
Russian Federation
Cand. Sci. (Chem.), associate prof., Department of MSNPT&PM, NUST «MISIS»


N. A. Predein
National University of Science and Technology (NUST) «MISIS»
Russian Federation
postgraduate student, Department of MSNPT&PM, NUST «MISIS»


References

1. Kolachev B.A., Eliseev Yu.S., Bratukhin A.G., Talalaev V.D. Titanovye splavy v konstruktsiyakh i proizvodstve i aviatsionno-konstruktorskoi tekhnike [Titanium alloys in structures and production and aircraft engineering]. Moscow: Izd-vo MAI, 2001.

2. Kolachev B.A., Livanov V.A., Bukhanova A.A. Mekhanicheskie svoistva titana i ego splavov [Mechanical properties of titanium and its alloys]. Moscow: Metallurgiya, 1974.

3. Babichev A.P., Babushkina N.A., Bratkovskii A.M. et al. Fizicheskie velichiny: Spravochnik [Physical quantities: Reference book]. Eds. I.S. Grigor’ev, E.Z. Meilikhov. Moscow: Energozatrat, 1991.

4. Glazunov S.G., Vazhenin S.F., Zyukov-Batyrev G.D., Ratner Ya.L. Primenenie titana v narodnom khozyaistve [The use of titanium in the national economy]. Kiev: Tekhnika, 1975.

5. Glazunov S.G., Moiseev V.N. Konstruktsionnye titanovye splavy [Structural titanium alloys]. Moscow: Metallurgiya, 1974.

6. Gordienko P.S., Gnedenkov S.V. Mikrodugovoe oksidirovanie titana i ego splavov [Microarc oxidation of titanium and its alloys]. Vladivostok: Dal’nauka, 1997.

7. Yerokhin A.L., Leyland A., Matthews A. Kinetic aspects of aluminiumtitanate layer formation on titanium alloys by plasma electrolytic oxidation. Appl. Surf. Sci. 2002. Vol. 200. P. 172—184.

8. Zhukov S.V., Suminov I.V., Epel’fel’d A.V., Zheltukhin R.V., Kantaeva O.A. Fiziko-mekhanicheskie svoistva, struktura i fazovуi sostav MDO-pokrytii na titane [Physico-mechanical properties, structure and phase composition of MAO coatings on titanium]. Vestnik MATI. 2007. No. 13 (85). P. 60—66.

9. Sun X.T., Jiang Z.H., Xin S.G., Yao Z.P. Composition and mechanical properties of hard ceramic coating containing α-Al2O3 produced by microarc oxidation on Ti—6Al—4V alloy. Thin Solid Films. 2005. No. 471. P. 194—199.

10. Cheng Yingliang, Peing Shaomei, Wu Xianguan, Jiu Hui Cao, Sheldon P., Thompson G.E. A comparison of plasma electrolytic onidation of Ti—6AL—4V and Zircaloy-2 alloys in a silicate-hexametaphosphate electrolyte. Elecrochim. Acta. 2015. No. 165. P. 301—313.

11. Yerokhin A.L., Nie X., Leyland A., Matthews A. Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti—6Al—4V alloy. Surf. Coat. Technol. 2000. Vol. 130. P. 195—206.

12. Wang Y.M., Jia D.C., Guo L.X., Lei T.Q., Jiang B.L. Effect of discharge pulsating on microarc oxidation coatings formed on Ti—6Al—4V alloy. Mater. Chem. Phys. 2005. Vol. 90. P. 128—139.

13. Sundararajan G., Rama Krishna L. Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology. Surf. Coat. Technol. 2003. Vol. 167. P. 269—277.

14. Bakovets V.V., Polyakova O.V., Dolgovesova I.V. Plazmenno-elektroliticheskaya anodnaya obrabotka metallov [Plasma electrolytic anodic treatment of metals]. Novosibirsk: Nauka. Sibirskoe otdelenie, 1990.

15. Rakoch A.G., Dub A.V., Gladkova A.A. Anodirovanie legkikh splavov pri razlichnykh elektricheskikh rezhimakh. Plazmenno-elektroliticheskaya nanotekhnologiya [Anodizing of light alloys under various electrical conditions. Plasma electrolytic nanotechnology]. Moscow: OOO «Staraya Basmannaya», 2012.

16. Rakoch A.G., Gladkova A.A., Zayar Linn, Strekalina D.M. The evidence of cathodic microdischarges during plasma electrolytic oxidation of light metallic alloys and micro-discharge intensity depending on pH of the electrolyte. Surf. Coat. Technol. 2015. No. 269. P. 138—144.

17. Shelekhov E.V., Sviridova T.A. Programs for X-ray analysis of polycrystals. Met. Sci. Heat Treat. 2000. Vol. 42. No. 8. P. 309—313.

18. Aver’yanov E.E. Spravochnik po anodirovaniyu [Anodizing handbook]. Moscow: Mashinostroenie, 1988.

19. Mamaev A.I., Mamaeva V.A. Sil’notokovye mikroplazmennye protsessy v rastvorakh elektrolitov [High-current microplasma processes in electrolyte solutions]. Novosibirsk: Izd-vo SO RAN, 2005.

20. Suminov I.V., Epel’fel’d A.V., Lyudin V.B., Krit B.L., Borisov A.M. Mikrodugovoe oksidirovanie (teoriya, tekhnologiya, oborudovanie) [Microarc oxidation (theory, technology, equipment)]. Moscow: EKOMET, 2005.


Review

For citations:


Rakoch A.G., Truong P.V., Gladkova A.A., Predein N.A. PHASE COMPOSITION AND WEAR RESISTANCE OF COATINGS FORMED ON VT6 (TI–6AL–4V) TITANIUM ALLOY BY PLASMA ELECTROLYTIC OXIDATION. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2018;(1):59-66. (In Russ.) https://doi.org/10.17073/1997-308X-2018-1-59-66

Views: 988


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)