INVESTIGATION OF THE STRUCTURE AND OXIDATION MECHANISM OF FEALCR/AL2O3 DETONATION SPRAYED COATINGS
https://doi.org/10.17073/1997-308X-2018-1-67-75
Abstract
Oxidation resistance of detonation sprayed coatings obtained from FeAlCr/Al2O3 powder produced by the method of mechanically assisted self-propagating high-temperature synthesis (MASHS) using aluminothermic reactions has been investigated. The powder has a sufficiently homogeneous composite structure consisting of chromium-alloyed ordered B2–FeAl and fine inclusions of α-Cr2O3 and α-Al2O3. Detonation coatings sprayed on a stainless steel substrate have a typical layered coating structure without cracks or spalling. The coating thickness is 250–300 μm, microhardness is 5,9–6,1 GPa. Coatings of a synthesized powder mainly inherit its structure and phase composition although some aluminum and chromium oxidation takes place when spraying. The features of cyclic and isothermal oxidation of the obtained coatings in air within a temperature range of 900–1000 °C have been studied. The oxidation resistance of synthesized powder detonation coatings after 48 h of oxidation in air at 950 °C is close to that of coatings obtained from FeAl–FexAly powder with an aluminum content of 45 wt.%. At the same time, the coefficient of linear thermal expansion of FeAlCr/Al2O3 coatings is closer to that of the substrate, and their creep resistance is higher as compared with the substrate due to the presence of fine inclusions of refractory oxides. α-Cr, Cr2O3 and a lot of fine alumina inclusions present in the synthesized powder and formed when spraying are supposed to accelerate the protective film formation while suppressing the nucleation and growth of hematite at early oxidation stages at temperatures up to 950 °C.
About the Authors
P. A. VityazBelarus
аcademician, Dr. Sci. (Tech.), prof., head of the Staff of the National Academy of Sciences of Belarus
220072, Belarus, Minsk, Nezavisimosti pr., 66
T. L. Talako
Belarus
Dr. Sci. (Tech.), principal researcher, Powder Metallurgy Institute
220005, Belarus, Minsk, Platonov str., 41).
A. I. Letsko
Belarus
Cand. Sci. (Tech.), associate prof., head of the laboratory «New materials and technologies», Powder Metallurgy Institute
N. M. Parnitsky
Belarus
research assistant, Powder Metallurgy Institute
M. S. Yakovleva
Ukraine
researcher, Institute for Problems in Materials Science
03680, Ukraine, Kiev, Krzhyzhanovsky str., 3
References
1. Stoloff N.S. Iron aluminides: present status and future. Mater. Sci. Eng. A. 1998. Vol. 258. P. 1—14.
2. Kang B.S.J., Cisloiu R. Evaluation of fracture behaviour of iron aluminides. Theor. Appl. Fracture Mech. 2006. Vol. 45. P. 25—40.
3. Kuc D., Niewielski G., Jablonska M., Bednarczyk I. Deformability and recrystallization of Fe —Al intermetallic phase — base alloy. JAMME. 2007. Vol. 20. P. 143—146.
4. Sikka V.K., Welsch G., Desai P.D. Oxidation and corrosion of intermetallic alloys. West Lafayette, Indiana: Metal Information Analysis Centre, 1996.
5. Stott F.H., Grabke H.J., Schutze M. Oxidation-sulphidation of iron aluminides. Oxidation of Intermetallics. Weinheim: Wiley-VCH, 1997.
6. Klower J., Grabke H.J., Schutze M. High temperature corrosion behaviour of iron aluminides and iron aluminium- chromium alloys. Oxidation of intermetallics. Weinheim: Wiley-VCH, 1997.
7. Morris D.G., Muñoz-Morris M.A., Chao J. Development of high strength, high ductility and high creep resistant iron aluminide. Intermetallics. 2004. Vol. 12. P. 821—826.
8. Tortorelli P.F., DeVan J.H., Goodwin G.M., Howell M. Elevated temperature coatings. Science and technology. Warrendale, PA: TMS, 1995.
9. Pint B.A., Tortorelli P.F., Wright I.G. Oxidation of intermetallics. N.Y.: Wiley, 1996.
10. Subramanian R. Iron-aluminide-Al2O3 composites by in situ displacement reactions: processing and mechanical properties. Mater. Sci. Eng. A. 1998. Vol. 254. P. 119— 128.
11. Grabke H.J., Schütze M. Oxidation of intermetallics. N.Y.: Wiley, 2007.
12. Tortorelli P.F., DeVan J.H. Compositional influences of the high temperature corrosion resistance of iron aluminides, in processing, properties, and applications of iron aluminides. Warrendale, PA: The Minerals, Metals and Materials Society, 1994.
13. DeVan J.H. Oxidation behaviour of Fe3Al and derived alloys. Oxidation of high temperature intermetallics. Warrendale: TMS, 1989.
14. Halfa H. Oxidation behavior of Fe3Al–5Cr–(0, 0.5, 1.5)Ti alloys at temperature ranges from 800 °С to 1200 °С. JMMCE. 2010. Vol. 9. P. 775—786.
15. Doychak J., Smialek J.L., Barrett C.A. Oxidation of high temperature intermetallics. Warrendale, PA: The Minerals, Metals and Materials Society, 1989.
16. Smialek J.L., Doychak J., Gaydosh D.J. Oxidation behavior of FeAl + Hf, Zr, B. Oxid. Met. 1990. Vol. 34. P. 259—270.
17. Zhenyu Liu, Gao Wei. Effects of chromium on the oxidation performance of β-FeAlCr coatings. Oxid. Met. 2000. Vol. 54. P. 189—209.
18. Gang Ji, Elkedim O., Grosdidier T. Deposition and corrosion resistance of HVOF sprayed nanocrystalline iron aluminide coatings. Surf. Coat. Technol. 2005. Vol. 190. P. 406—416.
19. Guilemany J.M., Lima C.R.C., Cinca N., Miguel J.R. Studies of Fe—40Al coatings obtained by high velocity oxy-fuel. Surf. Coat. Tech. 2006. Vol. 201. P. 2072—2079.
20. Guilemany J.М., Cinca N. High-temperature oxidation of Fe—40A1 coatings obtained by HVOF thermal spray. Inter metallics. 2007. Vol. 15. P. 1384—1394.
21. Guilemany J.M., Cinca N., Dosta S., Cano I.G. FeAl and NbAl3 intermetallic-HVOF coatings: Structure and properties. J. Therm. Spray Technol. 2009. Vol. 18. P. 536—545.
22. Senderowski C., Bojar Z. Gas detonation spray forming of Fe—Al coatings in the presence of interlayer. Surf. Coat. Technol. 2008. Vol. 202. P. 3538—3548.
23. Senderowski C., Bojar Z., Wołczyński W., Pawłowski A. Microstructure characterization of D-gun sprayed Fe— Al intermetallic coatings. Intermetallics. 2010. Vol. 18. P. 1405—1409.
24. Vityaz P.A., Letsko A.I., Talako T.L., Parnitsky N.M. Chromium alloyed FeAl-based powder for oxidation resistant coatings. Euro PM2015 Proceedings. 2015. Paper 3213202 (6p).
25. Витязь П.А., Лецко А.И., Талако Т.Л., Парницкий Н.М. Влияние структурного состояния хрома на стойкость к окислению композиционного порошка на основе алюминида железа, упрочненного включениями Al2O3. Порошковая металлургия: Республ. межвед. сб. науч. тр. Минск: Изд. дом «Беларуская наука», 2014. Вып. 37. С. 167—173; Vityaz P.A., Letsko A.I., Talako T.L., Parnitsky N.M. Vliyanie strukturnogo sostoyaniya khroma na stoikost’ k okisleniyu kompozitsionnogo poroshka na osnove alyuminida zheleza, uprochnennogo vklyucheniyami Al2O3. In: Poroshkovaya metallurgiya: Sbornik nauchnykh trudov [Effect of structural condition on chrome oxidation resistance of the composite powders based iron aluminide reinforced Al2O3 inclusions In: Powder metallurgy: Collection of proceedings]. Minsk: Izd. dom «Belaruskaya nauka», 2014. No. 37. P. 167—173.
26. Талако Т.Л., Беляев А.В., Ильющенко А.Ф., Лецко А.И. Порошковый материал на основе моноалюминида железа и способ его получения: Пат. 6545 (РБ). 2004; Talako T.L., Belyaev A.V., Ilyushchenko A.F., Letsko A.I. Poroshkovyi material na osnove monoalyuminida zheleza i sposob ego polucheniya [Powder material based on iron monoaluminide and method of its production]: Pat. 6545 (RB). 2004.
27. Лецко А.И., Талако Т.Л., Реутенок Ю.А., Парницкий Н.М. Состав шихты композиционного порошка FeAl(Cr)/ Al2O3: Пат. 19172 (РБ). 2015; Letsko A.I., Talako T.L., Reutenok Yu.A., Parnitsky N.M. Sostav shikhty kompozitsionnogo poroshka FeAl(Cr)/Al2O3 [Charge mixture composition for composite powder FeAl(Cr)/Al2O3]: Pat. 19172 (RB). 2015.
28. Grabke H.G. Oxidation of NiAl and FeAl. Intermetallics. 1999. Vol. 7. P. 1153 —1158.
29. Левашов Е.А. Физико-химические и технологические основы самораспространяющегося высокотемпературного синтеза. М.: БИНОМ, 1999; Levashov E.A. Fiziko-khimicheskie i tekhnologicheskie osnovy samorasprostranyayushchegosya vysokotemperaturnogo sinteza [Physicochemical and technological foundations of self-propagating high-temperature synthesis]. Mosсow: BINOM, 1999.
30. Szczucka-Lasota B., Formanek B., Szymanski K., Bierska B. Oxidation of thermally sprayed coatings with FeAl intermetallic matrix. In: Proc of 12th Int. Sci. Conf. «Achievements in materials and manufacturing engineering». 2004. P. 901—904.
Review
For citations:
Vityaz P.A., Talako T.L., Letsko A.I., Parnitsky N.M., Yakovleva M.S. INVESTIGATION OF THE STRUCTURE AND OXIDATION MECHANISM OF FEALCR/AL2O3 DETONATION SPRAYED COATINGS. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2018;(1):67-75. (In Russ.) https://doi.org/10.17073/1997-308X-2018-1-67-75