Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

DETERMINATION OF PARAMETERS FOR THE PLASTICITY MODEL OF VT-22 ALLOY POWDER PARTICLES

https://doi.org/10.17073/1997-308X-2018-2-4-12

Abstract

A computational and experimental method is proposed to determine the medium model for describing the mechanical properties of powder particles of a high-strength VT-22 titanium alloy obtained by plasma spraying in an inert gas jet. The method is based on the indirect determination of the σs ~ ε strain hardening diagram (yield stress dependence on plastic deformation). A specimen for fullscale tests was prepared as a section of powder particles filled into a special resin. The paper provides the results of Vickers indentation into VT-22 powder particles and the results of computer simulation of this process by the finite element method. The average value of the maximum indentation depth was hmax = 6,56 μm with a maximum loading value of 2 N. The Johnson-Cook elasto-plastic model of a material with nonlinear hardening was used for the volume element considered during the computer simulation. An algorithm for searching coefficients by computational experiment multistage planning was proposed to identify the parameters of the equation sought. Estimated maximum coincidences of experimental and calculated data were chosen as selection criteria, in particular, based on maximum indentation depth. As a result of the study, material model coefficient values that meet search conditions best were chosen from a possible set of such values. According to the algorithm proposed, the result was achieved in 4 calculation cycles. Powder metallographic study was carried out. It was found that particles have a coarse intragranular structure with the dominating b phase formed during plasma spraying. This probably led to a decrease in VT-22 alloy deformation resistance in the powder particles.

About the Authors

D. I. Kryuchkov
Ural Branch of the Russian Academy of Sciences (IES UB RAS)
Russian Federation

Cand. Sci. (Tech.), Researcher, Laboratory of system simulation, Institute of Engineering Science,

620049, Ekaterinburg, Komsomolskaya str., 34



A. G. Zalazinskii
IES UB RAS
Russian Federation
Dr. Sci. (Tech.), Principal researcher, Laboratory of system simulation


O. V. Romanova
Ural Branch of the Russian Academy of Sciences
Russian Federation

Engineer, Laboratory of powder, composite and nanomaterials, Institute of Metallurgy, 

620016, Ekaterinburg, Amundsena str., 101)



A. V. Nesterenko
IES UB RAS
Russian Federation
Cand. Sci. (Tech.), Senior researcher, Laboratory of material micromechanics


E. O. Smirnova
IES UB RAS
Russian Federation
Cand. Sci. (Tech.), Researcher, Laboratory of material micromechanics


References

1. Kiparisov S.S., Libenson G.A. Poroshkovaja metallurgija [Powder metallurgy]. Moscow: Metallurgija, 1980.

2. Alekhin V.P., Bulychev S.I. Raschet mekhanicheskikh kharakteristik pri ispytanii na vdavlivaniye s uchetom uprugikh deformatsiy [Calculation of mechanical characteristics in the test for indentation with allowance for elastic deformations]. Fizika i khimiya obrabotki materialov. 1978. No. 3. P. 134—138.

3. Bulychev S.I., Alekhin V.P. Method of kinetic hardness and microhardness in testing impression by an indentor. Industrial Laboratory. 1988. Vol. 53. No. 11. P. 1091—1096.

4. Bulychev S.I., Alekhin V.P. Ispytaniye materialov nepreryvnym vdavlivaniyem indentora [Testing of materials by depression]. Moscow: Mashinostroyeniye, 1990.

5. Bulychev S.I. O korrelyatsii diagramm vdavlivaniya i rastyazheniya [On the correlation of the indentation and extension diagrams]. Zavodskaya laboratoriya. 2001. Vol. 67. No. 11. P. 33—41.

6. Bulychev S.I., Kravchenkov A.N. Novyye parametry podobiya pri perekhode ot diagramm vdavlivaniya k diagrammam rastyazheniya [New similarity parameters in transition from indentation diagrams to tensile diagrams]. Zavodskaya laboratoriya. Diagnostika materialov. 2014. Vol. 80. No. 2. P. 49—54.

7. Fedosov S.A., Peshek L. Opredelenie mehanicheskih svojstv materialov mikroindentirovaniem: Sovremennye zarubezhnye metodiki [Determining mechanical properties of materials by microindentation: Modern foreign methods]. Moscow: Faculty of Physics of MSU, 2004.

8. Fedosov S.A. Indentirovanie materialov [The indentation of materials]. Nanoinzhenerija. 2014. No. 10 (40). P. 35—48.

9. Smirnov S.V., Smirnov V.K., Soloshenko A.N., Shvejkin V.P. Opredelenie soprotivlenija deformacii po rezul’tatam vnedrenija konicheskogo indentora [Determination of the yield stress on the results of the penetration of the conical indenter]. Kuznechno-shtampovochnoe proizvodstvo. 2000. No. 3. P. 3—6.

10. Konovalov D.A., Smirnov S.V., Konovalov A.V. Determination of metal strain-hardening curves from conical-indenter impression results. Russ. J. Nondestructive Testing. 2008. Vol. 44. No. 12. P. 847—853.

11. Smirnova E.O. Opredelenie diagramm deformacionnogo uprochnenija poverhnostnyh slojov metallicheskih materialov po rezul’tatam ispytanij na vdavlivanie i carapanie indentora Berkovicha [Determination of strain hardening diagrams of metallic materials surface layers based on the results of the indentation tests and the tests for the Berkovich indenter scratching]. In: Mezo-, nano-, biomehanika i mehanika prirodnyh processov: Vestnik Nizhegorodskogo Universiteta im. N.I. Lobachevskogo. 2011. No. 4 (2). P. 533—534.

12. Vasauskas S.S., Zhidonis V.Ju. Diagramma tverdosti i ee primenenie dlja opredelenija harakteristiki prochnosti metallov [The hardness diagram and its application for determining the strength characteristics of metals]. Zavodskaja laboratorija. 1962. No. 5. P. 605—608.

13. Atkins A.G., Tabor D. Plastic indentation in metals with cones. J. Mech. Phys. Solids. 1965. No. 13. Р. 149—164.

14. Cheng Y.-T., Li Z. Hardness obtained from conical indentation with various cone angles. J. Mater. Res. 2000. Vol. 15. No. 12. Р. 2830—2835.

15. Bucaille J.L., Stauss S., Felder E., Michler J. Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater. 2003. Vol. 51. P. 1663—1678.

16. Dean J., Clyne T.W. Extraction of plasticity parameters from a single test using a spherical indenter and FEM modeling. Mechanics of Materials. 2017. Vol. 105. P. 112— 122. DOI: dx.doi.org/10.1016/j.mechmat.2016.11.014.

17. Olsson E., Larsson P.-L. A numerical analysis of cold powder compaction based on micromechanical experiments. Powder Technology. 2013. No. 243. P. 71—78. DOI: dx.doi. org/10.1016/j.powtec.2013.03.040.

18. Dao M., Chollacoop N., Van Vliet K.J., Venkatesh T.A., Suresh S. Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 2001. Vol. 49. P. 3899—3918.

19. Panin V.E., Egorushkin V.E., Panin A.V. Fizicheskaja mezomehanika deformiruemogo tvjordogo tela kak mnogourovnevoj sistemy. 1. Fizicheskie osnovy mnogourovnevogo podhoda [Physical mesomechanics of a deformed solid as a multilevel system. I. Physical fundamentals of the multilevel approach]. Fizicheskaja mezomehanika. 2006. Vol. 9. No. 3. P. 9—22.

20. Abaqus/CAE User’s Manual (Version 6.10) Hibbitt, Karlsson & Sorensen, Inc. 2009

21. Wang F., Zhao J., Zhu N., Li Z. A comparative study on Johnson—Cook constitutive modeling for Ti—6Al—4V alloy using automated ball indentation (ABI) technique. J. Alloys and Compnd. 2015. Vol. 633. No. 5. P. 220—228. DOI: dx.doi.org/10.1016/j.jallcom.2015.01.284.

22. Johnson G.R., Cook W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 1985. Vol. 21. No. 1. P. 31—48.

23. Fujii H. Strengthening of alpha+beta titanium alloys by thermomechanical processing. Mater. Sci. Eng. A. 1998. Vol. 243. No. 1. P. 103—108.

24. Birta A.M., Champagne Jr. V.K., Sisson Jr. R.D., Apeliana D. Microstructural analysis of Ti—6Al—4V powder for cold gas dynamic spray applications. Adv. Powder Technol. 2015. Vol. 26. No. 5. P. 1335—1347.

25. Illarionov A.G., Popov A.A. Tehnologicheskie i jekspluatacionnye svojstva titanovyh splavov: uchebnoe posobie [Technological and exploitation properties of titanium alloys: educational material]. Ekaterinburg: UrFU, 2014.


Review

For citations:


Kryuchkov D.I., Zalazinskii A.G., Romanova O.V., Nesterenko A.V., Smirnova E.O. DETERMINATION OF PARAMETERS FOR THE PLASTICITY MODEL OF VT-22 ALLOY POWDER PARTICLES. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2018;(2):4-12. (In Russ.) https://doi.org/10.17073/1997-308X-2018-2-4-12

Views: 906


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)