Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

MECHANICAL ALLOYING WITH PARTIAL AMORPHIZATION OF FE–CR–CO–NI–MN MULTICOMPONENT POWDER MIXTURE AND ITS SPARK PLASMA SINTERING FOR COMPACT HIGH-ENTROPY MATERIAL PRODUCTION

https://doi.org/10.17073/1997-308X-2018-2-35-42

Abstract

This paper presents the results of studying the mechanical alloying (MA) effect on the surface morphology, microstructure and atomic-crystal structure of multicomponent Fe–Cr–Co–Ni–Mn powder mixture particles. The following materials were used as initial components: radio-engineering carbonyl iron powder (R-10 with an average particle size d = 3,5 μm), nickel powder (NPE-1, d = 150 μm), cobalt powder (PK-1u, d <71 μm), chromium powder (PH-1М, d <125 μm) and manganese powder (MR0, d <400 μm) were used. MA of the prepared mixture was carried out in the AGO-2 water-cooled mechanical activator using 9 mm steel balls with an acceleration of 90 g in air. Alloying time varied between 5 and 90 minutes. The ratio of ball mass to the mass of the mixture was 20 : 1. X-ray patterns of the initial and alloyed mixtures and the sample obtained by sintering were made on the DRON 3M diffractometer on FeKα radiation in the range of angles 2θ = 30°÷100°. The particle microstructure of the mixtures and compact sample section after sintering was studied by scanning electron microscopy. It is found that no peaks of the initial components are present on the X-ray pattern of the mixture after 90 minutes of mechanical activation, but there are peaks corresponding to the γ-Fe-based solid solution phase having a face-centered crystal lattice with an amorphous phase content increased by 20 %. A compact single-phase material was obtained by spark plasma sintering at 800 °С for 10 minutes from the mixture after 90-minute alloying. Material density was 7,49 kg/cm3, specific electrical resistivity was 0,94÷0,96·10–6 ·m, microhardness was 306÷328 kg/mm2, and the phase was distributed uniformly throughout the volume.

About the Authors

N. A. Kochetov
Institute of Structural Macrokinetics and Materials Science RAS (ISMAN)
Russian Federation

Cand. Sci. (Phys.-Math.), Senior researcher, Laboratory of dynamics of microheterogeneous processes, 

143432, Moscow region, Chernogolovka, Academician Osipyan str., 8



A. S. Rogachev
Institute of Structural Macrokinetics and Materials Science RAS (ISMAN)
Russian Federation
Dr. Sci. (Phys.-Math.), Prof., Head of the Laboratory of dynamics of microheterogeneous processes


A. S. Shchukin
Institute of Structural Macrokinetics and Materials Science RAS (ISMAN)
Russian Federation
Researcher, Laboratory of dynamics of microheterogeneous processes


S. G. Vadchenko
Institute of Structural Macrokinetics and Materials Science RAS (ISMAN)
Russian Federation
Cand. Sci. (Phys.-Math.), Leading researcher, Laboratory of dynamics of microheterogeneous processes


I. D. Kovalev
Institute of Structural Macrokinetics and Materials Science RAS (ISMAN)
Russian Federation
Cand. Sci. (Phys.-Math.), Researcher, Laboratory of X-ray investigation


References

1. Willens R.H.., Klement W., Duwez P. Continuous series of metastable solid solutions in silver-copper alloys. J. Appl. Phys. 1960. Vol. 31. P. 1136—1137.

2. Zolotuhin I.V. Amorfnie metallicheskie materiali [Amorphous metallic materials]. Sorosovskiy obrasovatelnyi zhurnal. 1997. No. 4. P. 73—78.

3. Pozdnyakov V.A. Fiziheskoe materialovedenie nanostrukturirovannih materialov [Physical materials science of nanostructured materials]. Moscow: Izd. dom MGIU, 2007.

4. Sudzuki K., Hudzumori H., Hasimoto K. Amorfnie metallic [Amorphous metals]. Moscow: Metallurgiya, 1987.

5. Brunelli K., Dabala V., Frattini R., Sandona G., Calliari I. Electrochemical behavior of Cu—Zr and Cu—Ti glassy alloys. J. Alloys and Compnd. 2001. No. 317-318. P. 595— 602.

6. Blanquet E., Mantoux A., Pons M., Vahlas C. Chemical vapor deposition and atomic layer deposition of amorphous and nanocrystalline metallic coatings: towards deposition of multimetallic films. J. Alloys and Compnd. 2010. Vol. 504. P. 422—424.

7. Shekar K.M., Nageshwar S. Electrodeposition of copper on Cu—Zr metallic glass substrates. J. Appl. Electrochem. 1988. Vol. 18. No. 2. P. 200—204.

8. Marikani A. Engineering physics. 2-nd ed. New Delhi: Ray Press, 2013.

9. Kobayashi A., Yano S., Kimura H., Inoe A. Fe-based metallic glass coatings produced by smart plasma spraying process. Mater. Sci. Eng. B. 2008. Vol. 148. No. 1-3. P. 110—113.

10. Pineda E., Bruna P., Ruta B., Gonzalez-Silveira M., Crespo D. Relaxation of rapidly quenched metallic glasses: Effect of the relaxation state on the slow low temperature dynamics. Acta Mater. 2013. Vol. 61. P. 3002—3011.

11. Kochetov N.A. Combustion and characteristics of mechanically activated Ni + Al mixture: Effects of the weight and size of the milling balls. Russ. J. Phys. Chem. B. 2016. Vol. 10. No. 4. P. 639—643. DOI: 10.1134/S1990793116040047.

12. Kovalev I.D., Kochetov N.A. Mechanical activation-induced structural changes in a 5Ti + 3Si mixture. Inorg. Mater. 2017. Vol. 53. No. 4. P. 447—450. DOI: 10.1134/ S0020168517040070

13. Rogachev A.S., Shkodich N.F., Vadchenko S.G., Baras F., Kovalev D. Yu., Rouvimov S., Nepapushev A.A., Mukasyan A.S. Influence of the high energy ball milling on structure and reactivity of the Ni + Al powder mixture. J. Alloys and Compnd. 2013. Vol. 577. P. 600—605.

14. Guver A., Nowosielski R., Borovski A., Babilas R. Fabrication of copper-titanium powders prepared by mechanical alloying. Indian J. Eng. Mater. Sci. 2014. Vol. 21. P. 265—271.

15. Pourfereidouni A., Akbari G.H. Development of nanostructure Cu—Ti alloys by mechanical alloying process. Adv. Mater. Res. 2014. Vol. 829. P. 168—172.

16. Politics C., Johnson W.L. Preparation of amorphous TiCux (0,10 < x < 0,87) by mechanical alloying. Appl. Phys. 1986. Vol. 60. No. 3. P. 1147—1151.

17. Savin V.V., Chaika V.A. Formation of amorphous powders of alloys of the Cu—Ti system with mechanical activation of powder mixtures. Powder Metall. and Met. Ceram. 1998. Vol. 37. No. 7. P. 448—457.

18. Molnar A., Domokos L., Katona T., Martinek T., Mulas G., Cocco G., Bertoti I., Szepvolgyi J. Activation of amorphous Cu—M (M—Ti, Zr, or Hf) alloy powders made by mechanical alloying. Mater. Sci. Eng. 1997. No. 226-228. P. 1074—1078.

19. Shkodich N.F., Rogachev A.S., Vadchenko S.G., Kovalev I.D., Nepapushev A.A., Rouvimov S.S., Mukasyan A.S. Formirovanie amorfnykh struktur i ikh kristallizatsiya v sisteme Cu—Ti pod deistviem vysokoenergeticheskoi mekhanicheskoi obrabotki [Formation of amorphous structures and their crystallization in Cu—Ti system by high-energy ball milling]. Izv. vuzov. Poroshk. metallurgiya i funkts. pokrytiya. 2017. No. 2. P. 14—21. DOI: dx.doi.org/10.17073/1997- 308X-2017-2-14-21

20. Gludovatz B., Hohenwarter A., Catoor D., Chang E.H., George E.P., Ritchie R.O. A fracture-resistant high-entropy alloy for cryogenic applications Science. 2014. Vol. 345. No. 6201. P. 1153—1158. DOI: 10.1126/science.1254581.

21. Fu Z., Koc R. Processing and characterization of TiB2- TiNiFeCrCoAl high-entropy alloy composite. J. Amer. Ceram. Soc. 2017. Vol. 100. P. 2803—2813. DOI: doi. org.10.1111/jace.14814.

22. Zhu G., Liu Y., Ye J. Fabrication and properties of Ti(C,N)-based cermets with multi-component AlCoCrFeNi high-entropy alloys binder. Mater. Lett. 2013. Vol. 113. P. 80—82.

23. Varalakshmi S., Kamaraj M., Murty B.S. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. J. Alloy and Compnd. 2008. Vol. 460. No. 1-2. P. 253—257.

24. Zhang K., Fu Z. Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high-entropy alloys. Intermetallics. 2012. Vol. 22. P. 24—32.

25. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A. 2004. Vol. 375-377. P. 213—218. DOI: doi.org/10.1016/j.msea.2003.10.257.


Review

For citations:


Kochetov N.A., Rogachev A.S., Shchukin A.S., Vadchenko S.G., Kovalev I.D. MECHANICAL ALLOYING WITH PARTIAL AMORPHIZATION OF FE–CR–CO–NI–MN MULTICOMPONENT POWDER MIXTURE AND ITS SPARK PLASMA SINTERING FOR COMPACT HIGH-ENTROPY MATERIAL PRODUCTION. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2018;(2):35-42. (In Russ.) https://doi.org/10.17073/1997-308X-2018-2-35-42

Views: 980


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)