MECHANICAL ALLOYING WITH PARTIAL AMORPHIZATION OF FE–CR–CO–NI–MN MULTICOMPONENT POWDER MIXTURE AND ITS SPARK PLASMA SINTERING FOR COMPACT HIGH-ENTROPY MATERIAL PRODUCTION
https://doi.org/10.17073/1997-308X-2018-2-35-42
Abstract
About the Authors
N. A. KochetovRussian Federation
Cand. Sci. (Phys.-Math.), Senior researcher, Laboratory of dynamics of microheterogeneous processes,
143432, Moscow region, Chernogolovka, Academician Osipyan str., 8
A. S. Rogachev
Russian Federation
Dr. Sci. (Phys.-Math.), Prof., Head of the Laboratory of dynamics of microheterogeneous processes
A. S. Shchukin
Russian Federation
Researcher, Laboratory of dynamics of microheterogeneous processes
S. G. Vadchenko
Russian Federation
Cand. Sci. (Phys.-Math.), Leading researcher, Laboratory of dynamics of microheterogeneous processes
I. D. Kovalev
Russian Federation
Cand. Sci. (Phys.-Math.), Researcher, Laboratory of X-ray investigation
References
1. Willens R.H.., Klement W., Duwez P. Continuous series of metastable solid solutions in silver-copper alloys. J. Appl. Phys. 1960. Vol. 31. P. 1136—1137.
2. Zolotuhin I.V. Amorfnie metallicheskie materiali [Amorphous metallic materials]. Sorosovskiy obrasovatelnyi zhurnal. 1997. No. 4. P. 73—78.
3. Pozdnyakov V.A. Fiziheskoe materialovedenie nanostrukturirovannih materialov [Physical materials science of nanostructured materials]. Moscow: Izd. dom MGIU, 2007.
4. Sudzuki K., Hudzumori H., Hasimoto K. Amorfnie metallic [Amorphous metals]. Moscow: Metallurgiya, 1987.
5. Brunelli K., Dabala V., Frattini R., Sandona G., Calliari I. Electrochemical behavior of Cu—Zr and Cu—Ti glassy alloys. J. Alloys and Compnd. 2001. No. 317-318. P. 595— 602.
6. Blanquet E., Mantoux A., Pons M., Vahlas C. Chemical vapor deposition and atomic layer deposition of amorphous and nanocrystalline metallic coatings: towards deposition of multimetallic films. J. Alloys and Compnd. 2010. Vol. 504. P. 422—424.
7. Shekar K.M., Nageshwar S. Electrodeposition of copper on Cu—Zr metallic glass substrates. J. Appl. Electrochem. 1988. Vol. 18. No. 2. P. 200—204.
8. Marikani A. Engineering physics. 2-nd ed. New Delhi: Ray Press, 2013.
9. Kobayashi A., Yano S., Kimura H., Inoe A. Fe-based metallic glass coatings produced by smart plasma spraying process. Mater. Sci. Eng. B. 2008. Vol. 148. No. 1-3. P. 110—113.
10. Pineda E., Bruna P., Ruta B., Gonzalez-Silveira M., Crespo D. Relaxation of rapidly quenched metallic glasses: Effect of the relaxation state on the slow low temperature dynamics. Acta Mater. 2013. Vol. 61. P. 3002—3011.
11. Kochetov N.A. Combustion and characteristics of mechanically activated Ni + Al mixture: Effects of the weight and size of the milling balls. Russ. J. Phys. Chem. B. 2016. Vol. 10. No. 4. P. 639—643. DOI: 10.1134/S1990793116040047.
12. Kovalev I.D., Kochetov N.A. Mechanical activation-induced structural changes in a 5Ti + 3Si mixture. Inorg. Mater. 2017. Vol. 53. No. 4. P. 447—450. DOI: 10.1134/ S0020168517040070
13. Rogachev A.S., Shkodich N.F., Vadchenko S.G., Baras F., Kovalev D. Yu., Rouvimov S., Nepapushev A.A., Mukasyan A.S. Influence of the high energy ball milling on structure and reactivity of the Ni + Al powder mixture. J. Alloys and Compnd. 2013. Vol. 577. P. 600—605.
14. Guver A., Nowosielski R., Borovski A., Babilas R. Fabrication of copper-titanium powders prepared by mechanical alloying. Indian J. Eng. Mater. Sci. 2014. Vol. 21. P. 265—271.
15. Pourfereidouni A., Akbari G.H. Development of nanostructure Cu—Ti alloys by mechanical alloying process. Adv. Mater. Res. 2014. Vol. 829. P. 168—172.
16. Politics C., Johnson W.L. Preparation of amorphous TiCux (0,10 < x < 0,87) by mechanical alloying. Appl. Phys. 1986. Vol. 60. No. 3. P. 1147—1151.
17. Savin V.V., Chaika V.A. Formation of amorphous powders of alloys of the Cu—Ti system with mechanical activation of powder mixtures. Powder Metall. and Met. Ceram. 1998. Vol. 37. No. 7. P. 448—457.
18. Molnar A., Domokos L., Katona T., Martinek T., Mulas G., Cocco G., Bertoti I., Szepvolgyi J. Activation of amorphous Cu—M (M—Ti, Zr, or Hf) alloy powders made by mechanical alloying. Mater. Sci. Eng. 1997. No. 226-228. P. 1074—1078.
19. Shkodich N.F., Rogachev A.S., Vadchenko S.G., Kovalev I.D., Nepapushev A.A., Rouvimov S.S., Mukasyan A.S. Formirovanie amorfnykh struktur i ikh kristallizatsiya v sisteme Cu—Ti pod deistviem vysokoenergeticheskoi mekhanicheskoi obrabotki [Formation of amorphous structures and their crystallization in Cu—Ti system by high-energy ball milling]. Izv. vuzov. Poroshk. metallurgiya i funkts. pokrytiya. 2017. No. 2. P. 14—21. DOI: dx.doi.org/10.17073/1997- 308X-2017-2-14-21
20. Gludovatz B., Hohenwarter A., Catoor D., Chang E.H., George E.P., Ritchie R.O. A fracture-resistant high-entropy alloy for cryogenic applications Science. 2014. Vol. 345. No. 6201. P. 1153—1158. DOI: 10.1126/science.1254581.
21. Fu Z., Koc R. Processing and characterization of TiB2- TiNiFeCrCoAl high-entropy alloy composite. J. Amer. Ceram. Soc. 2017. Vol. 100. P. 2803—2813. DOI: doi. org.10.1111/jace.14814.
22. Zhu G., Liu Y., Ye J. Fabrication and properties of Ti(C,N)-based cermets with multi-component AlCoCrFeNi high-entropy alloys binder. Mater. Lett. 2013. Vol. 113. P. 80—82.
23. Varalakshmi S., Kamaraj M., Murty B.S. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. J. Alloy and Compnd. 2008. Vol. 460. No. 1-2. P. 253—257.
24. Zhang K., Fu Z. Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high-entropy alloys. Intermetallics. 2012. Vol. 22. P. 24—32.
25. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A. 2004. Vol. 375-377. P. 213—218. DOI: doi.org/10.1016/j.msea.2003.10.257.
Review
For citations:
Kochetov N.A., Rogachev A.S., Shchukin A.S., Vadchenko S.G., Kovalev I.D. MECHANICAL ALLOYING WITH PARTIAL AMORPHIZATION OF FE–CR–CO–NI–MN MULTICOMPONENT POWDER MIXTURE AND ITS SPARK PLASMA SINTERING FOR COMPACT HIGH-ENTROPY MATERIAL PRODUCTION. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2018;(2):35-42. (In Russ.) https://doi.org/10.17073/1997-308X-2018-2-35-42