Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

SYNTHESIS OF COMPOSITE POWDERS «TIC – NICRBSI ALLOY BINDER» FOR CLADDING AND DEPOSITION OF WEAR-RESISTANT COATINGS

https://doi.org/10.17073/1997-308X-2018-2-43-53

Abstract

TiC + NiCrBSi binder metal matrix composites were obtained by self-propagating high-temperature synthesis (SHS) in the reaction powder mixtures of titanium, carbon (carbon black) and NiCrBSi alloy. It has been found that steady combustion in a stationary mode occurs when the content of the thermally inert metal binder in reactive mixtures does not exceed 50 vol.%. Porous SHS cakes were crashed and resulting granules were separated to fractions by screening to get the composite powder fraction necessary for coating application. Synthesis products were studied by optical and scanning electron microscopy, X-ray diffraction and electron microprobe analysis. It has been found that the average size of carbide inclusions depends on the content of thermally inert alloy powder in the reaction mixtures and can be purposefully regulated in a wide range. The microhardness of composite powder granules obtained by crushing the SHS conglomerates decreases monotonically with an increasing content of the metal binder having hardness less than that of titanium carbide. According to X-ray diffraction data, the titanium carbide lattice parameter turns out to be considerably less than values known for equiatomic titanium carbide. It has been found by electron microprobe analysis of carbide inclusions in the composite structure that the ratio of carbon and titanium mass contents is 0,21 as compared with 0,25 in equiatomic titanium carbide. Iron and silicon contents in the carbide are negligible, oxygen and nickel contents are below 1 wt.%, and chromium content is 2,5 wt.%. The analysis of known data on the effect of all the above-listed dopants on the titanium carbide lattice allows for a conclusion that the carbon deficit is a main reason of the lattice parameter reduction.

About the Authors

G. A. Pribytkov
Institute of Strength Physics and Materials Science SB RAS (ISPMS SB RAS)
Russian Federation

Dr. Sci. (Tech.), Assistant professor, Senior scientist, Laboratory of physics of nanostructured functional materials, 

634055, Tomsk, Akademicheskii av. 2/4



I. A. Firsina
Institute of Strength Physics and Materials Science SB RAS (ISPMS SB RAS)
Russian Federation
Cand. Sci. (Tech.), Junior researcher, Laboratory of physics of nanostructured functional materials


V. V. Korzhova
Institute of Strength Physics and Materials Science SB RAS (ISPMS SB RAS)
Russian Federation
Cand. Sci. (Tech.), Research scientist, Laboratory of physics of nanostructured functional materials


M. G. Krinitсyn
Institute of Strength Physics and Materials Science SB RAS (ISPMS SB RAS)
Russian Federation
Technologist, Laboratory of physics of nanostructured functional materials


A. A. Polyanskaya
Tomsk Polytechnic University
Russian Federation

Student, 

634050, Tomsk, Lenina av. 30



References

1. González R., Cadenas M., Fernández R., Cortizo J.L., Rodríguez E. Wear behaviour of flame sprayed NiCrBSi coating remelted by flame or by laser. Wear. 2007. Vol. 262. P. 301—307.

2. Navas C., Colaço R., de Damborenea J., Vilar R. Abrasive wear behaviour of laser clad and flame sprayed-melted NiCrBSi coatings. Surf. Coat. Technol. 2006. Vol. 200. P. 6854—6862.

3. Xuan H.-F., Wang Q.-Y., Bai Sh.-L., Liu Z.-D., Sun H.-G., Yan P.-Ch. A study on microstructure and flame erosion mechanism of a graded Ni—Cr—B—Si coating prepared by laser cladding. Surf. Coat. Technol. 2014. Vol. 244. P. 203—209.

4. Zhang X.C., Xu B.S., Xuan F.Z., Wang Z.D., Tu S.T. Failure mode and fatigue mechanism of laser-remelted plasma-sprayed Ni alloy coatings in rolling contact. Surf. Coat. Technol. 2011. Vol. 205. P. 3119—3127.

5. Gurumoorthy K., Kamaraj M., Prasad Rao K., Sambasiva Rao A., Venugopal S. Microstructural aspects of plasma transferred arc surfaced Ni-based hardfacing alloy. Mater. Sci. Eng. A. 2007. Vol. 456. P. 11—19.

6. Houdková Š.,Smazalová E., Vostřák M., Schubert J. Properties of NiCrBSi coating, as sprayed and remelted by different technologies. Surf. Coat. Technol. 2014. Vol. 253. P. 14—26.

7. Katsich C., Badisch E. Effect of carbide degradation in a Ni-based hardfacing under abrasive and combined impact/abrasive conditions. Surf. Coat. Technol. 2011. Vol. 206. P. 1062—1068.

8. Shengfeng Zh., Xiaoqin D. Laser induction hybrid rapid cladding of WC particles reinforced NiCrBSi composite coatings. Appl. Surf. Sci. 2010. Vol. 256. P. 4708—4714.

9. Tobar M.J., Alvares C., Amado J.V., Rodrigues G., Yanez A. Morphology and characterization of laser clad composite NiCrBSi—WC coatings on stainless steel. Surf. Coat. Technol. 2006. Vol. 200. P. 6313—6317.

10. Chao M.-J., Wang W.-L., Liang E.-J., Ouyang D. Microstructure and wear resistance of TaC reinforced Ni-based coating by laser cladding. Surf. Coat. Technol. 2008. Vol. 202. P. 1918—1922.

11. Nurminen J., Nаkki J., Vuoristo P. Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding. Int. J. Refract. Metals & Hard Mater. 2009. Vol. 27. P. 472—478.

12. Kiparisov S.S., Levinskii Yu.V., Petrov A.P. Karbid titana. Poluchenie, svoistva, primenenie [Titanium carbide. Production, properties, applications]. Moscow: Metallurgiya, 1987.

13. Sun R.L., Lei Y.W., Niu W. Laser clad TiC reinforced NiCrBSi composite coatings on Ti—6Al—4V alloy using a CW CO2 laser. Surf. Coat. Technol. 2009. Vol. 203. P. 1395—1399.

14. Lei Y., Sun R., Tang Y., Niu W. Numerical simulation of temperature distribution and TiC growth kinetics for high power laser clad TiC/NiCrBSiC composite coatings. Opt. Laser Technol. 2012. Vol. 44. P. 1141—1147.

15. Makarov A.V., Soboleva N.N., Malygina I.Yu., Osintseva A.L. Formirovanie kompozitsionnogo pokrytiya s povyshennoi abrazivnoi iznosostoikost’y metodom gazoporoshkovoi lazernoi naplavki [Formation of a composite coating with increased abrasive wear resistance by the gas-powder laser surfacing method]. Uprochnyayushchie tekhnologii i pokrytiya. 2013. No. 11. P. 38—44.

16. Cai B., Tan Y.-F., He L., Tan H., Gao L. Tribological properties of TiC particles reinforced Ni-based alloy composite coatings. Trans. Nonferr. Met. Soc. China. 2013. Vol. 23. No. 6. P. 1681—1688.

17. Kalita V.I., Komlev D.I. Plazmennye pokrytiya s nanokristallicheskoi i amorfnoi strukturoi [Plasma coatings with a nanocrystalline and amorphous structure]. Moscow: Izdatel’skii Dom «Biblioteka», 2008.

18. Borisov Yu.S., Borisova A.L., Adeeva L.I., Tunik A.Yu., Burlachenko A.N., Rupchev V.L. Poluchenie poroshkov dlya gazotermicheskikh pokrytii metodami mekhanicheskogo legirovaniya i mekhanokhimicheskogo sinteza [Production of powders for gas-thermal coatings by mechanical alloying and mechanochemical synthesis]. Svarochnoe proizvodstvo. 2010. No. 12. P. 18—22.

19. Sitnikov A.A., Yakovlev V.I., Seidurov M.N., Tatarkin M.E., Sobachkin A.V., Stepanova N.V., RezanovI.Yu. Struktura i svoistva naplavlennykh pokrytii iz poroshkov mekhanoaktivirovannykh SVS-kompozitov [Structure and properties of deposited coatings from powders of mechanically activated SHS-composites]. Obrabotka metallov. 2011. No. 3. P. 51—54.

20. Vitaz P., Iluschenko A., Belyaev A., Talako T. Investigation of properties of composite SHS powders on the base of chromium and titanium сarbides. Proc. EUROPM 2005 Congress (Prague, Czech Republic, 2—5 Oct. 2005). 2005. Vol. 2. P. 91—94.

21. Chesnokov A.E. Vliyanie vysokoenergeticheskikh vozdeistvii na mikrostrukturu SVS metallokeramicheskikh poroshkov i gazotermicheskikh pokrytii «karbid titana — nikhrom» [Influence of high-energy impact on the microstructure of SHS of cermet powders and gas-thermal coatings «titanium carbide-nichrome»]: Abstr. Dis. PhD. Krosnoyarsk: Siberian federal university, 2016.

22. Zuev L.V., Gusev A.I. Vliyanie nestekhiometrii i uporyadocheniya na period bazisnoi struktury kubicheskogo karbida titana [Influence of nonstoichiometry and ordering on the period of the basic structure of cubic titanium carbide]. Fizika tverdogo tela. 1999. Vol. 41. No. 4. P. 1134—1141.

23. Sovremennye instrumental’nye materialy na osnove tugoplavkikh soedinenii [Modern instrumental materials based on refractory compounds]. Moscow: Metallurgiya, 1985.

24. Akopyan A.G., Dolukhanyan S.K., Borovinskaya I.P. Vzaimodeistvie titana, bora i ugleroda v rezhime goreniya [Interaction of titanium, boron and carbon in the combustion condition]. Fizika goreniya i vzryva. 1978. No. 3. P. 70—73.

25. Rogachev A.S., Mukas’yan A.S. Gorenie dlya sinteza materialov: vvedenie v strukturnuyu makrokinetiku [Combustion for the synthesis of materials: an introduction to structural macrokinetics]. Moscow: Fizmatlit, 2012.

26. Pribytkov G.A., Krinitsyn M.G., Korzhova V.V. Issledovanie produktov SV-sinteza v poroshkovykh smesyakh titana i ugleroda, soderzhashchikh izbytok titana [Investigation of products of SH-synthesis in powder mixtures of titanium and carbon containing with a titanium excess]. Perspektivnye materialy. 2016. No. 5. P. 59—68.

27. Pribytkov G.A., Korzhova V.V., Baranovskii A.V., Krinitsyn M.G. Fazovyj sostav i struktura kompozitsionnykh poroshkov karbida titana so svyazkoj iz stali R6M5, poluchennykh metodom SVS [Phase composition and structure of SHS-composite powders «titanium carbide — R6M5 steel binder»]. Izv. vuzov. Poroshk. metallurgiya i funkts. pokrytiya. 2017. No. 2. P. 64—71.

28. Zhang W.N., Wang H.Y., Wang P.J., Zhang J., He L., Jiang Q.C. Effect of Cr content on the SHS reaction of Cr—Ti—C system. J. Alloys and Compnd. 2008. Vol. 465. P. 127—131.

29. Zhang W.N., Wang H.Y., Yin S.Q., Jiang Q.C. Effect of Ti/C ratio on the SHS reaction of Cr—Ti—C system. Mater. Lett. 2007. Vol. 61. P. 3075—3078.

30. Merzhanov A.G., Borovinskaya I.P. Samorasprostranyayushchiisya vysokotemperaturnyi sintez tugoplavkikh soedinenii [Self-propagating high temperature synthesis of refractory compounds]. Doklady AN SSSR. 1972. Vol. 204. No. 2. P. 366—369.


Review

For citations:


Pribytkov G.A., Firsina I.A., Korzhova V.V., Krinitсyn M.G., Polyanskaya A.A. SYNTHESIS OF COMPOSITE POWDERS «TIC – NICRBSI ALLOY BINDER» FOR CLADDING AND DEPOSITION OF WEAR-RESISTANT COATINGS. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2018;(2):43-53. (In Russ.) https://doi.org/10.17073/1997-308X-2018-2-43-53

Views: 889


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)