Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

IGNITION AND COMBUSTION OF W–TEFLON–AL MIXTURES

https://doi.org/10.17073/1997-308X-2018-2-54-60

Abstract

Relationships between ignition and product structure formation in W–Teflon (Tf)–Al powder mixtures was explored by thermodynamic and structural analyses. The use of tungsten as one of mixture components was dictated by the need to obtain high-density condensation products. Aluminum was used as a heat-generating agent to reduce ignition temperature and increase mixture combustion temperature. Combustion experiments used compositions with a fixed tungsten-to-Teflon ratio, while aluminum content varied according to the formula: (1 – x)(0,8W + 0,2Tf) + xAl = const. After intermixing in the AGO-2 planetary mill in hexane environment, the powders were compressed into 0,01–0,02 g samples and then heated in a BN crucible in argon environment under atmospheric pressure at a variable crucible heating rate. The sample temperature increased sharply on the thermogram once the ignition temperature was reached. It is shown that as the heating rate increases, the ignition temperature of systems grows, and this may be due to transfer from thermal explosion mode to ignition mode. Low-aluminum mixtures yielded large amounts of gaseous products during ignition and combustion, and this results either in defragmentation of combustion product or in formation of porous cakes. The analysis of products obtained with high-aluminum systems indicated WAl4 as a main product. For higher aluminum content results of thermodynamic calculations strongly differed from experimental ones owing to the lack of thermodynamic data for tungsten aluminides in the Thermo software and to the strong mismatch between the actual reaction conditions and adiabatic equilibrium ones. Calculated and experimental results suggest that the formation of fused high-density products (ρW2C = = 17,2 g/cm3) is possible at an optimal aluminum content ≈10 wt.%. When this value is exceeded, the main product, WAl4, has a much lower density (ρWAl4 = 6,6 g/cm3), which is inadequate for practical implementation.

About the Authors

M. I. Alymov
Institute of Structural Macrokinetics and Materials Science RAS (ISMAN)
Russian Federation

Dr. Sci. (Tech.), Corr. member of the RAS, Director,

143432, Moscow Region, Chernogolovka, Academician Osipyan str., 8



S. G. Vadchenko
Institute of Structural Macrokinetics and Materials Science RAS (ISMAN)
Russian Federation
Cand. Sci. (Phys.-Math.), Leading researcher, Laboratory of dynamics of microheterogeneous processes


I. S. Gordopolova
Institute of Structural Macrokinetics and Materials Science RAS (ISMAN)
Russian Federation
Cand. Sci. (Phys.-Math.), Senior researcher, Laboratory of shock-wave processes


References

1. Denisaev A.A., Steinberg A.S., Berlin A.A. Vliyanie temperatury na chyvstvitelnost k udaru sloevyh kompozicii aluminii—teflon [Influence of temperature on shock sensitivity of the layered compositions of aluminium-teflon]. Doclady Academii Nauk. 2009. Vol. 428. No. 1. P. 44—47.

2. Thadhani N.N. Shock-induced chemical reactions and synthesis of materials. Progr. Mater. Sci. 1993. Vol. 37. No. 2. P. 117—226.

3. Zelepugin S.A., Dolgoborodov A.Yu., Ivanova O., Zelepugin A.S. Udarno-volnovoi syntez v tverdykh smesyakh [Shock-wave synthesis in solid mixtures]. Tomsk: IOA SB RAS, 2012.

4. Barambojm N.K. Mechanochimiya polymerov [Mechano-chemistry of polymers]. Moscow: Rostehizdat, 1961.

5. Gorokhovskiy G.A. Poverhnostnoe dispergirovanie dinamicheski kontactiruyucshikh polymerov i metallov [Surface dispersion dynamically contacting polymers and metals]. Kiev: Naukova dumka, 1972.

6. Malkin A.I., Kiselev M.R., Kliuev V.A., Loznecova N.N., Toporov Yu.P. Vliyanie mechanoactivacii na termicheskie svoistva poroshkovykh smesei aluminiya s polytetraftoretilenom [Influence mechanical activation on the thermal properties of powder mixtures of aluminium with politetraftorjetilenom]. Materialovedenie. 2012. No. 3. Р. 10—14.

7. Boldyrev V.V., Avvakumov E.G., Boldyreva E.V. et al. Fundamentalnye osnovy mechanicheskoi activacii, mechanosynteza i mechanochimicheskikh tehnologii [Fundamentals of mechanical activation, and mechanоsynthesis are considered chemical technologies]. (Ed. Avvakumov E.G.). Novosibirsk: SO RAN, 2009.

8. Demyanenko D.B., Dudyrev A.S., Strahov I.G., Cynbal M.N. Kompleks novykh pirotehnicheskikh zamedlitelnykh sostavov dlya vremennykh ustroistv piroavtomatiki i sredstv iniciirovaniya [Complex new pyrotechnic compositions for temporary piroavtomatiс devices and means of initiation]. Izv. Sankt-Peterburgskogo Gos. Tekhnol. Inst. (Tekh. Univ.). 2012. Vol. 42. No. 16. P. 3—7.

9. Demyanenko D.B., Dudyrev A.S., Ephanov V.V., Strahov I.G, Cynbal M.N. Pirotehnicheskie vremennye ustroistva dlya ob’ektov kosmicheskoi tekhniki [Pyrotechnic devices for temporary objects of space technology]. Nauchno-technicheskii journal NPO im. S.A. Lavochkina. 2012. Vol. 14. No. 3. P. 35—40.

10. Demyanenko D.B., Dudyrev A.S., Ephanov V.V. Complex novyh pirotehnicheskikh sredstv dlya obespecheniya funkcionirovaniya malykh kosmicheskikh apparatov [Complex new fireworks, to ensure the functioning of small spacecraft]. Izv. Sankt-Peterburgskogo Gos. Tekhnol. Inst. (Tekh. Univ.). 2007. Vol. 27. No. 1. P. 5—9.

11. Madjakin F.P., Tikhonov N.A. Componenty i producty sgoraniya pirotehnicheskikh sostavov [A components and products of combustion of pyrotechnic compositions: Polymers and oligomers]. Kazan: Izd-vo Kazanskogo Gos. Tech. Un-ta, 2008.

12. Polard F.B., Arnold J.B. Vspomogatelnye sistemy raketno-kosmicheskoi tekhniki [Support systems of rocket and space technology]. Moscow: Mir, 1970.

13. James O. Hightower, James W. Hamner, Richard L. Matthews. Solid propellant with alumina burning rate catalyst. Pat. 4084992 (USA). 1978.

14. Shoshin Y.L., Mudryy R.S., Dreizin E.L. Preparation and characterization of energetic Al—Mg mechanical alloy powders. Combus. and Flame. 2002. Vol. 128. No. 3. P. 259—269.

15. Streletskii A., Kolbanev I.V., Borunova A.B., Butyagin P.Yu. Mechanochemically activated Al: Preparation, structure and chemical properties: Abstr. INCOME 2003. Braunschweig, Germany (7—11 Sept. 2003). P. 44.

16. Streletskii A.N., Pivkina A., Kolbanev I., Leipunsky I., Pschechenkov P., Lomaeva S., Polunina I., Frolov Yu., Butyagin P. Mechanochemically activated nano-aluminium: Structure and morphology: Abstr. INCOME 2003. Braunschweig, Germany (7—11 Sept. 2003). P. 137.

17. Levitas V. The effects of fuel particle size on the reaction of Al/teflon mixtures. New-York: John Borrelli Dean of the Graduate School, 2006.

18. Denisaev A.A., Steinberg A.S., Berlin A.A. Iniciirovanie reactii v toncoplenochnyh mnogosloinyh obrazcah aluminii-ftoroplast pri udare na kopre [Initiation reactions in thin-film multilayer aluminium-fluoropolymer samples upon impact to koper]. Khimicheskaya phizika. 2008. Vol. 27. No. 6. P. 83—90.

19. Laptenkov V.N., Saltanov L.S., Svidinskij A.V., Belov V.Yu., Baranov G.V., Krylov V.P. Kompozicionnyi material dlya osuschestvleniya vzryvopronikayuschego deistviya [Composite material for the implementation of the explosive actions]. Pat. 2579586 (RU). 2016.

20. Vadchenko S.G., Alymov M.I. Ignition of W—Teflon—Al Powder Mixtures. Int. J. Self-Propagating High-Temperature Synthesis. 2017. Vol. 26. No. 2. Р. 137—139.

21. Selivanov V.V., Imhovik N.A., Lashkov V.N., Selezenev A.A. Issledovanie processa phiziko-khimicheskoi destructii PTFE i kompozicii PTFE-metal pri termicheskikh i udarno-volnovyh vozdeistviyakh [Study process physical and chemical degradation of PTFE and PTFE-metal compositions with thermal and shock-wave effects]. Khimicheskaya fizika. 2001. Vol. 20. No. 8. P. 80—85.

22. Buznik V.M., Kuryavyi V.G. Morfologiya i stroyeniye mikronnykh i nanorazmernykh poroshkov olitetraftoretilena, poluchennykh gazofaznym metodom [Morphology and structure of fine teflon powders prepared by gas-phase method]. Ros. khimicheskii. zhurnal im. D.I. Mendeleyeva. 2008. Vol. LII. No. 3. P. 131—139.

23. Tarasov A.V., Alikhanian A.S., Arkhangel’skii I.V. Vzaimodeystviye ftorpolimerov s perekhodnymi metallami [Chemical interaction of fluoropolymers with transition metals]. Neorgan. materialy. 2009. Vol. 45. No. 7. P. 1—6.


Review

For citations:


Alymov M.I., Vadchenko S.G., Gordopolova I.S. IGNITION AND COMBUSTION OF W–TEFLON–AL MIXTURES. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2018;(2):54-60. (In Russ.) https://doi.org/10.17073/1997-308X-2018-2-54-60

Views: 1033


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)