CONDUCTIVE TIB2–ALN–BN-BASED COMPOSITE SHS CERAMICS
https://doi.org/10.17073/1997-308X-2018-2-61-68
Abstract
About the Authors
A. V. KarpovRussian Federation
Research scientist , Laboratory of materials science,
142432, Moscow region, Chernogolovka, Academician Osipyan str., 8
S. V. Konovalikhin
Russian Federation
Cand. Sci. (Chem.), Senior research scientist, X-Ray diffraction investigation laboratory
I. P. Borovinskaya
Russian Federation
Dr. Sci. (Chem.), Chief research scientist, Self-propagating high-temperature synthesis laboratory
N. V. Sachkova
Russian Federation
Research scientist, Laboratory of materials science
D. Yu. Kovalev
Russian Federation
Cand. Sci. (Tech.), Head of Laboratory X-ray diffraction investigation laboratory
A. E. Sytschev
Russian Federation
Cand. Sci. (Tech.), deputy Director, Head of Laboratory of materials science
References
1. Weimer W. Carbide, nitride and boride materials: synthesis and processing. London: Chapman&Hall, 1997.
2. Merzhanov A.G., Borovinskaya I.P. Samorasprostranjajushhijsja vysokotemperaturnyj sintez tugoplavkih neorganicheskih soedinenij [Self-propagating high-temperature synthesis of refractory inorganic compounds]. Doklady Akademii Nauk SSSR. 1972. Vol. 204. No. 2. P. 366—369.
3. Borovinskaya I.P., Bunin V.A., Vishnyakova G.A., Karpov A.V. Some specific features of synthesis and characteristics of (TiB2—AlN—BN)-based ceramic materials. Int. J. SHS. 1999. Vol. 8. No. 4. P. 451—457.
4. Rogachev A.S., Mukasyan A.S. Combustion for materials synthesis. NY: CRC Press, Taylor and Francis, 2015.
5. Zhou L., Zheng Y., Du Sh. Fabrication of BN—AlN—TiB2 compound conductive ceramics by self-propagating high temperature synthesis and hot isostatic pressing. Key Eng. Mater. 2007. Vol. 336. P. 786—789.
6. Bunin V.A., Karpov A.V., Senkovenko M.Yu. Fabrication, structure, and properties of TiB2—AlN ceramics. Inorg. Mater. 2002. Vol. 38. No. 7. P. 746—750.
7. Mattia D., Desmaison-Brut M., Tétard D., Desmaison J. Wetting of HIP AlN—TiB2 ceramic composites by liquid metals and alloys. J. Eur. Ceram. Soc. 2005. Vol. 25. No. 10. P. 1797—1803. DOI:10.1016/j.jeurceramsoc.2004.12.012.
8. Amosov A.P., Borovinskaya I.P., Merzhanov A.G. Poroshkovaya tekhnologiya samorasprostranyayushchegosya vysokotemperaturnogo sinteza materialov [Powder technology of SHS-materials]. Moscow: Mashinostroenie, 2007.
9. Son M.J., Kang S.S., Lee E.-A., Kim K.H. Properties of TiBN coating on the tool steels by PECVD and its applications. J. Mater. Proces. Technol. 2002. Vol. 130. P. 266—271. DOI: 10.1016/S0924-0136(02)00748-3.
10. Cao Y., Hu Z., Yan L., Yu F., Tu W. Self-forming TiBN nanocomposite multilayer coating prepared by pulse cathode Arc method. Nanoscale Res. Lett. 2016. Vol. 11. P. 349. DOI: 10.1186/s11671-016-1564-9.
11. Karpov A.V., Morozov Y.G., Bunin V.A., Borovinskaya I.P. Effect of yttria additions on the electrical conductivity of SHS nitride ceramics. Inorg. Mater. 2002. Vol. 38. No. 6. P. 631—634. https://doi.org/10.1023/A:1015881922939.
12. Pease R.S. An X-ray study of boron nitride. Acta Crystallograph. 1952. Vol. 5. P. 356—361.
13. Aigner K., Lengauer W., Rafaja D., Ettmayer P. Lattice parameters and thermal expansion of Ti(CxN1–x), Zr(CxN1–x), Hf(CxN1–x) and TiN1–x from 298 to 1473K as investigated by high-temperature X-ray diffraction. J. Alloys and Compnd. 1994. Vol. 215. P. 121—126.
14. Naicahigashi K., Ishibashi H., Minamigawa S. Electron density distribution in AlN from powder X-ray diffraction data by the maximum-entropy method. Phys. Chem. Solids. 1993. Vol. 54. P. 445—452.
15. Moehr S., Mueller-Buschbaum H.M., Grin Yu., von Schnering Y.G. H—TiO oder TiB, ? — eine Korrektur. Zeitschrift fur Anorganische und Allgemeine Chemie. 1996. Bd. 622. No. 6. S. 1035—1037. DOI: https://doi.org/10.1002/zaac. 19966220618
16. Ormont B.F. Vvedenie v phisicheskuyu khimiyu i kristallokhimiyu poluprovodnikov [Introduction to physical chemistry and crystal chemistry of semiconductors]. Moscow: Vysshaya shkola, 1982.
17. Andrievsky R.A., Kalinnikov G.V., Kobelev N.P., Soifer Ya.M., Shtansky D.V. Struktura i phisiko-mekhanicheskie svoistva nanostrukturnykh boronitridnykh plenok [Structure and physical-mechanical properties of nanostructured boronitride films]. Solid State Phys. 1997. Vol. 39. No. 10. P. 1859—1864.
Review
For citations:
Karpov A.V., Konovalikhin S.V., Borovinskaya I.P., Sachkova N.V., Kovalev D.Yu., Sytschev A.E. CONDUCTIVE TIB2–ALN–BN-BASED COMPOSITE SHS CERAMICS. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2018;(2):61-68. (In Russ.) https://doi.org/10.17073/1997-308X-2018-2-61-68