Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

CONDUCTIVE TIB2–ALN–BN-BASED COMPOSITE SHS CERAMICS

https://doi.org/10.17073/1997-308X-2018-2-61-68

Abstract

The paper studies the microstructure, phase composition, and electrical conductivity of TiB2–AlN–BN-based composite ceramics obtained by self-propagating high-temperature synthesis (SHS). Electrical resistivity dependence on temperature was measured in the range Т = 300÷1300 K in a vacuum of 2·10–3 Pa using a standard 4-point DC technique. It is found that higher TiB2 content in the initial composition (from 60 to 80 wt.%) and lower Al content (from 20 to 40 wt.%) results in increased TiN and BN content in synthesis products, and decreased TiB2 and AlN content as a result of TiB2 reaction with nitrogen. Lower Al content in the initial mixture leads to lower AlN content in synthesis products. According to the results obtained, electrical resistivity curves are inconsistent during the «heating–cooling» cycle for all ceramic compositions due to changes in the contact zone of conducting phases in the temperature range Т = 800÷1200 К. Three specific temperature ranges were identified: (I) 300 to 800 K when ρ values increase monotonically with increasing temperature, while heating and cooling ρ(Т) curves coincide completely; (II) Т = 800÷1200 К when electrical resistivity behavior varies – its values strongly depend on the sample heat treatment mode; (III) Т > 1200 К, when coincidence of heating-cooling curves is observed.

About the Authors

A. V. Karpov
Institute of Structural Macrokinetics and Materials Science RAS (ISMAN)
Russian Federation

Research scientist , Laboratory of materials science, 

142432, Moscow region, Chernogolovka, Academician Osipyan str., 8



S. V. Konovalikhin
Institute of Structural Macrokinetics and Materials Science RAS (ISMAN)
Russian Federation
Cand. Sci. (Chem.), Senior research scientist, X-Ray diffraction investigation laboratory


I. P. Borovinskaya
Institute of Structural Macrokinetics and Materials Science RAS (ISMAN)
Russian Federation
Dr. Sci. (Chem.), Chief research scientist, Self-propagating high-temperature synthesis laboratory


N. V. Sachkova
Institute of Structural Macrokinetics and Materials Science RAS (ISMAN)
Russian Federation
Research scientist, Laboratory of materials science


D. Yu. Kovalev
Institute of Structural Macrokinetics and Materials Science RAS (ISMAN)
Russian Federation
Cand. Sci. (Tech.), Head of Laboratory X-ray diffraction investigation laboratory


A. E. Sytschev
Institute of Structural Macrokinetics and Materials Science RAS (ISMAN)
Russian Federation
Cand. Sci. (Tech.), deputy Director, Head of Laboratory of materials science


References

1. Weimer W. Carbide, nitride and boride materials: synthesis and processing. London: Chapman&Hall, 1997.

2. Merzhanov A.G., Borovinskaya I.P. Samorasprostranjajushhijsja vysokotemperaturnyj sintez tugoplavkih neorganicheskih soedinenij [Self-propagating high-temperature synthesis of refractory inorganic compounds]. Doklady Akademii Nauk SSSR. 1972. Vol. 204. No. 2. P. 366—369.

3. Borovinskaya I.P., Bunin V.A., Vishnyakova G.A., Karpov A.V. Some specific features of synthesis and characteristics of (TiB2—AlN—BN)-based ceramic materials. Int. J. SHS. 1999. Vol. 8. No. 4. P. 451—457.

4. Rogachev A.S., Mukasyan A.S. Combustion for materials synthesis. NY: CRC Press, Taylor and Francis, 2015.

5. Zhou L., Zheng Y., Du Sh. Fabrication of BN—AlN—TiB2 compound conductive ceramics by self-propagating high temperature synthesis and hot isostatic pressing. Key Eng. Mater. 2007. Vol. 336. P. 786—789.

6. Bunin V.A., Karpov A.V., Senkovenko M.Yu. Fabrication, structure, and properties of TiB2—AlN ceramics. Inorg. Mater. 2002. Vol. 38. No. 7. P. 746—750.

7. Mattia D., Desmaison-Brut M., Tétard D., Desmaison J. Wetting of HIP AlN—TiB2 ceramic composites by liquid metals and alloys. J. Eur. Ceram. Soc. 2005. Vol. 25. No. 10. P. 1797—1803. DOI:10.1016/j.jeurceramsoc.2004.12.012.

8. Amosov A.P., Borovinskaya I.P., Merzhanov A.G. Poroshkovaya tekhnologiya samorasprostranyayushchegosya vysokotemperaturnogo sinteza materialov [Powder technology of SHS-materials]. Moscow: Mashinostroenie, 2007.

9. Son M.J., Kang S.S., Lee E.-A., Kim K.H. Properties of TiBN coating on the tool steels by PECVD and its applications. J. Mater. Proces. Technol. 2002. Vol. 130. P. 266—271. DOI: 10.1016/S0924-0136(02)00748-3.

10. Cao Y., Hu Z., Yan L., Yu F., Tu W. Self-forming TiBN nanocomposite multilayer coating prepared by pulse cathode Arc method. Nanoscale Res. Lett. 2016. Vol. 11. P. 349. DOI: 10.1186/s11671-016-1564-9.

11. Karpov A.V., Morozov Y.G., Bunin V.A., Borovinskaya I.P. Effect of yttria additions on the electrical conductivity of SHS nitride ceramics. Inorg. Mater. 2002. Vol. 38. No. 6. P. 631—634. https://doi.org/10.1023/A:1015881922939.

12. Pease R.S. An X-ray study of boron nitride. Acta Crystallograph. 1952. Vol. 5. P. 356—361.

13. Aigner K., Lengauer W., Rafaja D., Ettmayer P. Lattice parameters and thermal expansion of Ti(CxN1–x), Zr(CxN1–x), Hf(CxN1–x) and TiN1–x from 298 to 1473K as investigated by high-temperature X-ray diffraction. J. Alloys and Compnd. 1994. Vol. 215. P. 121—126.

14. Naicahigashi K., Ishibashi H., Minamigawa S. Electron density distribution in AlN from powder X-ray diffraction data by the maximum-entropy method. Phys. Chem. Solids. 1993. Vol. 54. P. 445—452.

15. Moehr S., Mueller-Buschbaum H.M., Grin Yu., von Schnering Y.G. H—TiO oder TiB, ? — eine Korrektur. Zeitschrift fur Anorganische und Allgemeine Chemie. 1996. Bd. 622. No. 6. S. 1035—1037. DOI: https://doi.org/10.1002/zaac. 19966220618

16. Ormont B.F. Vvedenie v phisicheskuyu khimiyu i kristallokhimiyu poluprovodnikov [Introduction to physical chemistry and crystal chemistry of semiconductors]. Moscow: Vysshaya shkola, 1982.

17. Andrievsky R.A., Kalinnikov G.V., Kobelev N.P., Soifer Ya.M., Shtansky D.V. Struktura i phisiko-mekhanicheskie svoistva nanostrukturnykh boronitridnykh plenok [Structure and physical-mechanical properties of nanostructured boronitride films]. Solid State Phys. 1997. Vol. 39. No. 10. P. 1859—1864.


Review

For citations:


Karpov A.V., Konovalikhin S.V., Borovinskaya I.P., Sachkova N.V., Kovalev D.Yu., Sytschev A.E. CONDUCTIVE TIB2–ALN–BN-BASED COMPOSITE SHS CERAMICS. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2018;(2):61-68. (In Russ.) https://doi.org/10.17073/1997-308X-2018-2-61-68

Views: 1039


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)