Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

MACROSTRUCTURE AND STRENGTH OF AL–ZN–SN COMPOSITE PRODUCED BY LIQUID PHASE SINTERING OF AL–ZN ALLOY AND PURE TIN POWDER MIXTURE

https://doi.org/10.17073/1997-308X-2018-2-69-75

Abstract

The paper studies the liquid phase sintering features of compacts made of Al–10Zn alloy and Grade PO 2 tin powder mixture as well as the effect of sintering modes on the structure and strength of the (Al–10Zn)–40Sn antifriction composite formed. The porosity of original raw compacts ranged from 5 to 18 %. They were sintered in a vacuum furnace at a residual pressure of gases lower than 10–2 MPa. Sintering temperature varied from 550 to 615 °С, where partial aluminum wetting with liquid tin was observed. Sample holding time at a given sintering temperature was 30–180 min. Structural studies have shown that the particle size of aluminum and tin phases increased with an increase in sintering temperature and holding time. Mechanical properties of sintered composites were determined by the compression test. Test samples were cut from the middle area of sintered compacts. The tests have shown that (Al–10Zn)–40Sn composite samples have high ductility. Moreover, these samples exhibit higher strength in comparison with Al–40Sn sintered composite with a pure aluminum matrix due to more intensive strain hardening of the matrix at high deformation levels. It was found that the composites obtained when sintering samples with a low initial porosity and subjected to pre-exposure at low temperature have the highest strength. Based on the reported results it can be concluded that the liquid-phase sintering method within the specified temperature range allows to obtain the (Al–10Zn)–40Sn composites with a continuous aluminum matrix to effectively prevent localized deformation in the soft Sn interlayers. The optimum sintering temperature should not exceed 600 °С.

About the Authors

N. M. Rusin
Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences (ISPMS SB RAS)
Russian Federation

Cand. Sci. (Tech.), Senior researcher, Laboratory of physics of nanostructured functional materials, 

634055, Tomsk, pr. Akademicheskii, 2/4



A. L. Skorentsev
Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences (ISPMS SB RAS); Tomsk Polytechnic University
Russian Federation

Cand. Sci. (Tech.), Junior researcher, Laboratory of physics of nanostructured functional materials;

Engineer of Department of general physics, 634050, Tomsk, Lenin av., 30



References

1. Bushe N.A., Goryacheva I.G., Makhovskaya Yu.Yu. Effect of aluminum alloy composition on self-lubrication of frictional surfaces. Wear. 2003. Vol. 254. P. 1276—1280.

2. Буше Н.А., Двоскина В.А., Раков К.М., Гуляев А.С. Подшипники из алюминиевых сплавов. М.: Транспорт, 1974; Bushe N.A., Dvoskina V.A., Rakov K.M., Gulyaev A.S. Podshipniki iz aluminievykh splavov [Bearings made of aluminum alloys]. Moscow: Transport, 1974.

3. Kostornov A.G., Fushchich O.I. Sintered antifriction materials. Powder Metall. Met. Ceram. 2007. Vol. 46. No. 9-10. P. 503—512.

4. Abed E.J. Study of solidification and mechanical properties of Al—Sn casting alloys. Asian Trans. Eng. 2012. Vol. 2. No. 3. P. 89—98.

5. Harris S.J., McCartney D.G., Horlock A.J., Perrin C. Production of ultrafine microstructures in Al—Sn, Al— Sn—Cu and Al—Sn—Cu—Si alloys for use in tribological applications. Mater. Sci. Forum. 2000. Vol. 331-337. P. 519—526.

6. Tanaka T., Sakamoto M., Yamamoto K., Sato Y., Kato T. Aluminum-based bearing alloy with excellent fatigue resistance and anti-seizure property: Pat. 5162100 (USA). 1992.

7. Hernandez O., Gonzalez G. Microstructural and mechanical behavior of highly deformed Al—Sn alloys. Mater. Charact. 2008. Vol. 59. P. 534—541.

8. Xu K., Wongpreedee K., Russel A.M. Microstructure and strength of a deformation processed Al—20%Sn in situ composites. J. Mater. Sci. 2002. Vol. 37. P. 5209—5214.

9. Liu X., Zeng M.Q., Ma Y., Zhu M. Wear behavior of Al— Sn alloys with different distribution of Sn dispersoids manipulated by mechanical alloying. Wear. 2008. Vol. 265. P. 1857—1863.

10. Kim K.H., Slazhniev M.A., Kim S.W., Sim H.S., Euh K. Study of controlled segregation of Al—Sn alloys for bearings. In: Proc. 8-th Int. Conf. on Electromagnetic processing of materials (EPM2015) (Cannes, France, 2015). https://hal.archives-ouvertes.fr/hal-01334926.

11. Nassar A., Taha A.S., Labeeb A., Gouda S.A. Structure and properties of the Al—Sn—Cu bearing alloy under different cold rolling conditions. J. Mater. Sci. Eng. 2015. Vol. 5. No. 7-8. P. 298—304. DOI: 10.17265/2161-6221/2015. 7-8.007.

12. Figueroa C.G., Ortega I., Jacobo V.H., Ortiz A., Bravo A.E., Schouwenaars R. Microstructures of tribologically mo dified surface layers in two-phase alloys. IOP Conf. Series: Mater. Sci. Eng. 2014. Vol. 63. P. 012018. DOI: 10.1088/1757-899X/63/1/012018.

13. Dhokey N.B., Athavale V.A., Narkhede N., Kamble M. Influence of mixing technique on sintering response of binary aluminium alloy powders. Adv. Mat. Lett. 2013. Vol. 4 (2). P. 164—168. DOI: 10.5185/amlett.2012. 6369.

14. Zhiming W., Hoaran G., Guorong Z., Zhongquan G., Xinying T. Temperature-induced anomalous structural changes of Al—12wt.%Sn—4wt.%Si melt and its influence on as-cast structure. China Foundry. 2010. Vol. 7. No. 2. P. 138—142.

15. Straumal B., Molodov D., Gust W. Grain boundary wetting phase transitions in the Al—Sn and Al—Sn—Pb systems. Mater. Sci. Forum. 1996. Vol. 207—209. P. 437—440.

16. Evans E.B., McCormick M.A., Kennedy S.L., Erb U. The effect of inclusion size on grain boundary wetting in A1— Sn alloys. Appl. Phys. 1987. Vol. A 42. P. 269—272.

17. Русин Н.М., Иванов К.В. Особенности пластического течения порошкового сплава Al—40Sn при экструзии. Изв. вузов. Цвет. металлургия. 2011. No. 2. С. 48— 54; Rusin N.M., Ivanov K.V. Osobennosti plasticheskogo techeniya poroshkovogo splava Al—40Sn pri ekstruzii [Features of plastic flow of Al—40Sn powder alloy during extrusion]. Izv. vuzov. Tsvet. metallurgiya. 2011. No. 2. P. 48—54.

18. Rusin N.M., Skorentsev A.L., Kolubaev E.A. Structure and tribotechnical properties of Al—Sn alloys prepared by the method of liquid-phase sintering. Adv. Mater. Res. 2014. Vol. 1040. P. 166—170.

19. Русин Н.М., Скоренцев А.Л. Способ получения износостойкого антифрикционного самосмазывающегося сплава: Пат. 2492964 (РФ). 2013; Rusin N.M., Skorentsev A.L. Sposob polucheniya iznosostoikogo antifriktsionnogo samosmazyvayushchegosya splava [Method of obtaining the wear-resistant antifriction selflubricating alloy]: Pat. 2492964 (RF). 2013.

20. Harris S.J., McCartney D.G., Horlock A.J., Porrin C. Production of ultrafine microstructure in Al—Sn, Al— Sn—Cu and Al—Sn—Cu—Si alloys for use in tribological application. Mater. Sci. Forum. 2000. Vol. 331-337. P. 519—526.

21. Kotadia H.R., Patel J.B., Fan Z., Doernberg E., SchmidFetzer R. Solidification and processing of aluminum based immiscible alloys. In: Aluminium alloys: Fabrications, characterization and applications II. TMS. 2009. P. 81—86.

22. Гопиенко В.Г., Черепанов В.П., Галанов А.И., Петрович С.Ю., Липухин Е.А., Буров В.П., Мананников Н.В. Установка для получения металлических порошков распылением расплавов: Пат. 2229960 (РФ). 2004; Gopienko V.G., Cherepanov V.P, Galanov A.I., Petrovich S.Yu, Lipukhin E.A., Burov V.P., Manannikov N.V. Ustanovka dlya polucheniya metallicheskikh poroshkov raspyleniem rasplavov [Device for the production of metal powders by spraying melts]: Pat. 2229960 (RF). 2004.


Review

For citations:


Rusin N.M., Skorentsev A.L. MACROSTRUCTURE AND STRENGTH OF AL–ZN–SN COMPOSITE PRODUCED BY LIQUID PHASE SINTERING OF AL–ZN ALLOY AND PURE TIN POWDER MIXTURE. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2018;(2):69-75. (In Russ.) https://doi.org/10.17073/1997-308X-2018-2-69-75

Views: 796


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)