Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

On the question of the applicability of G.V. Samsonov’s activated sintering concept in studying the processes of powder material deformation

https://doi.org/10.17073/1997-308X-2018-4-6-14

Abstract

Some Yu.G. Dorofeev’s memoirs about joint work and meetings with outstanding materials science expert G.V. Samsonov are given. Meetings in Yugoslavia were of particular importance where G.V. Samsonov and M.M. Ristićtogether with other worldfamous scientists created the International Institute for the Science of Sintering. In the last years of his life, G.V. Samsonov proposed the concept of sintering activation by additives that act as electron acceptors and additionally contribute to the ionic bond in the matrix material. The paper considers the possibility of using this concept in the development of activating additives that reduce the activation energy of the plastic deformation of iron-based powder materials. Sintering activation when forming stable electronic configurations can be accomplished by: 1) accelerating the grain-boundary heterodiffusion of the matrix material in the presence of phase segregations containing an activating microadditive (W–Ni system); 2) intensifying shrinkage durng the plastic flow of matrix material particles facilitated by diffusion porosity formed in the additive particles as a result of predominant additive atom diffusion into base metal particles (Fe–Ni, Fe–Co, Fe–Mn systems); 3) increasing the self-diffusion coefficient of base metal atoms due to the expanded area of a less close-packed crystal lattice (αphase) upon activating additive dissolution (Fe–Mo system). The article reviews the information available on the prospects for using manganese and chromium as compaction activating additives. The compaction activation energy of iron-based powder materials can be reduced by introducing manganese additives. At the same time, the use of diffusion saturation technology is promising. The question of using chromium as an activator does not have an unambiguous answer and suggests the need for further study.

About the Authors

V. Yu. Dorofeyev
Platov South-Russian State Polytechnic University (PSRSPU (NPI).
Russian Federation

Dr. Sci. (Tech.), professor of the mechanical engineering Departmen.

346428, Russia, Rostov region, Novocherkassk, Prosveshcheniya str., 132.



D. N. Sviridova
Platov South-Russian State Polytechnic University (PSRSPU (NPI).
Russian Federation

Assistant of the Department of automobiles and transport-technological complexes.

346428, Russia, Rostov region, Novocherkassk, Prosveshcheniya str., 132.



Kh. S. Kochkarova
North Caucasian State Humanitarian Technological Academy.
Russian Federation

Senior lecturer of the Department of technological machines and processing of materials.

369000, Russia, Karachay-Cherkessia, Cherkessk, Stavropolskaya str., 36.



References

1. Andrievskii R.A. Samsonov and modern material science. Poroshkovaya Metallurgiya. 1998. No. 1—2. P. 7—12 (In Russ.).

2. Kovalchenko M.S., Kulikov L.M., Ivashchenko V.I., Timofeeva I.I. Grigorii Samsonov’s contribution in creating and developing of materials science of refractory compounds. Powder Metall. Met. Ceram. 2018. Vol. 57. No. 1—2. P. 1—8 .

3. Upadhyaya G.S. Professor Grigorii Samsonov: Genuine materials scientist. Powder Metall. Met. Ceram. 2018. Vol. 57. No. 1—2. P. 9—12.

4. Dorofeyev Yu.G. In memory of an outstanding scientist. Sci. Sintering. 1978. Vol. 10. Spec. Iss. P. 77—79 (In Russ.).

5. Samsonov G.V., Serebryakova T.I., Neronov V.A. Borides. Moscow: Atomizdat, 1975 (In Russ.).

6. Samsonov G.V., Kulik O.P., Polishchuk V.S. Production and methods for the analysis of nitrides. Kiev: Nauk. dumka, 1978 (In Russ.).

7. Samsonov G.V. Electronic theory of sintering. Sci. Sintering. 1971. Vol. 3. Spec. Iss. P. 329—369 (In Russ.).

8. StefanovićD.Č., PetrovićV., RistićM.M.Contribution to electronic theory of consolidation process. Sci. Sintering. 1980. Vol. 12. No. 3. Р. 147—154.

9. Dorofeev Yu.G., Popov S.N.Welding together of metals during dynamic hot pressing. Soviet Powder Metall. Met. Ceram. 1971. Vol. 10. No. 2. P. 118—124.

10. RistićM.M. G.V. Samsonov’s search for the essential nature of the sintering process. Powder Metall. Met. Ceram. 1998. Vol. 37. No. 1—2. P. 11—14.

11. Dorofeyev V.Yu., Sviridova A.N. On the importance of joining processes in triboelectrochemistry and materials science. In: Problems of triboelectrochemistry: Proc. of International scientific and technical conference. Novochekassk: YuRGTU, 2006. P. 68—73 (In Russ.).

12. Samsonov G.V. Application of the electronic theory to the sintering of ceramic materials. In: Unpublished work. Cited by [10] (In Russ.).

13. Tuchinskii L.I. Solid-phase consolidation of reinforced metals. Kiev: Nauk. dumka, 1980 (In Russ.).

14. Dorofeev Yu.G. Mechanism of formation of material in the dynamic hot pressing of porous powder blanks. Soviet Powder Metall. Met. Ceram.1970. Vol. 9. No. 10. P. 8 0 9 —812 .

15. Shvab R., Sundaram M.V., Karlsson H., Chasoglou D., Berg S., Hryha E., Nyborg L.Manufacturing of valve bridge component utilizing lean alloyed powders and vacuum sintering. Powder Metall. Prog.2018. Vol. 18. No. 1. P. 031—039. URL: http://dx.doi.org/10.1515/pmp-2018-0004.

16. Sulowski M. Development of PM manganese steels. In: Proc. Euro PM 2004. Powder metallurgy world congress and exhibition(Vienna, Austria, 17—21 Oct. 2004). Austria Centre, EPMA, 2004. Vol. 2. P. 297—301.

17. Neumann B., Kotthoff G., Arnhold V. REACH: Risks, challenges and opportunities for sintered parts manufacturers. URL: http://www.epma.com/reach-downloads (дата обращения 07.08.2018).

18. Šalak A. Sintered manganese steels. 2. Manganese evaporation during sintering. Powder Metall. Int.1980. Vol. 12. No. 2. P. 72—75.

19. Šalak A., SeleckáM. Adverse effect of high purity atmosphere on sintering of manganese steels. Powder Metall. 2010. Vol. 53. No. 4. P. 285—293.

20. Baglyuk G.A. Hot forming of powder high-speed steels. Powder Metall. Met. Ceram.2005. Vol. 44. No. 9—10. P. 426—428.

21. Yutishev A.S. Development of production technology for bimetallic disk mills with working elements from powder high-speed steels: Abstract of the dissertation of PhD. Novocherkassk: NGTU, 1994 (In Russ.).

22. German R.M. A quantitative theory of diffusional activated sintering. Sci. Sintering.1984. Vol. 16. Spec. Iss. Р. 75 —8 5.

23. Fedorchenko I.M., Ivanova I.I. Activation of the sintering of iron powder by nickel, cobalt, and manganese additions. I. Soviet Powder Metall. Met. Ceram. 1966. Vol. 5. No. 9. P. 694—702.

24. Fedorchenko I.M., Skorokhod V.V. Theory and practice of sintering. Soviet Powder Metall. Met. Ceram.1967. Vol. 6. No. 10. P. 790—805.

25. Radomysel’skii I.D., Klevtsov V.N. Chemism and kinetics of diffusion chrome plating and manganization of iron powder in hydrogen. In: Sintered structural materials: Materials of III All-Union seminar on sintered structural materials (Kiev, April 1975). Kiev: IPM of Academy of Sciences of the Ukrainian SSR, 1976. P. 3—15 (In Russ.).

26. Martyukhin I.D. Iron-manganese structural materials, their properties and application. In: Sintered structural materials: Materials of II All-Union seminar on sintered structural materials. Kiev: IPM of Academy of Sciences of the Ukrainian SSR, 1976. P. 139—142 (In Russ.).

27. Sherman A.D., Zhukov A.A., Abdullaev E.V. et al. Cast iron. Moscow: Metallurgiya, 1991 (In Russ.).

28. Koval’chenko M.S. Hot pressing powders of refractory compounds and materials based on them. Powder Metall. Met. Ceram.1998. Vol. 37. No. 1—2. P. 37—44.

29. Kushtalova I.P., RistićM.M. Recrystallization of refractory materials. I. Physical essence of recrystallization. Sci. Sintering.1984. Vol. 16. Spec. Iss. Р. 111—113.

30. Chizhikov Yu.M. Rollability of steel and alloys. Moscow: Metallurgizdat, 1961 (In Russ.).

31. Link R. Advances in PM structural and material process technology. In: Advances in structural PM component production: Proc. 1997 Eur. conf. on advances in structural PM component production (Munich, Germany, 15—17 Oct. 1997). P. 20—26.

32. Radomysel’skii I.D., Arakelyan N.A. Shrinkage during the sintering of powder chromium steel. Soviet Powder Metall. Met. Ceram. 1967. Vol. 6. No. 3. P. 188—193.

33. Dorofeev Yu.G. Work of densification of porous materials during compaction. Soviet Powder Metall. Met. Ceram. 1967. Vol. 6. No. 3. P. 178—182.

34. Babichev A.P., Babushkina N.A., Bratkovskii A.M. et al. Physical quantities. Moscow: Energoatomizdat, 1991 (In Russ.).

35. German R.M., Rabin B.H.Enhanced sintering through second phase additions. Powder Metall. 1985. Vol. 28. No. 1. P. 7—12 .

36. Andreeva T.V., Goryachev Yu.M., Kovenskaya B.A. Dependence of physical properties of high refractory compounds on electronic structure. Sci. Sintering. 1984. Vol. 16. Spec. Iss. Р. 59—63 (In Russ.).

37. Andrievskii R.A. The role of materials structure in the densification process. Sci. Sintering. 1984. Vol. 16. Spec. Iss. Р. 107—109 (In Russ.).

38. Stepanov S.I. Dependence of compaction of powders of elements at pressing from electronic structure of atoms. Neorganicheskie materialy. 1983. Vol. 19. No. 9. P. 1580—1582 (In Russ.).

39. Mordasov M.D., Firsova A.V., Mordasov D.M. Inf luence of the true particle density of powder systems on their fractal dimension. Vestnik TGTU. 2017. Vol. 23. No. 2. P. 348—355 (In Russ.).


Review

For citations:


Dorofeyev V.Yu., Sviridova D.N., Kochkarova Kh.S. On the question of the applicability of G.V. Samsonov’s activated sintering concept in studying the processes of powder material deformation. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2018;(4):6-14. (In Russ.) https://doi.org/10.17073/1997-308X-2018-4-6-14

Views: 927


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)