Preview

Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Emerging challenges in solid-state sintering science and technology

https://doi.org/10.17073/1997-308X-2018-4-28-31

Полный текст:

Аннотация

Major research challenges in the field of solid-state sintering are noted following the authors’ recent paper (J. Am. Ceram. Soc. 2017. Vol. 100. P. 2314–2352). They are highlighted in the areas of (i) modeling and simulation (mesoscale as well as macroscale), (ii) microstructural evolution with respect to interface structure, (iii) novel sintering techniques, and (iv) solutions for practical systems.

Об авторах

Suk-Joong L. Kang
Korea Advanced Institute of Science and Technology (KAIST), Daejeon.
Южная Корея

Dr.-Ing., Dr. d’Etat, Distinguished Professor (Emeritus), Department of Materials Science and Engineering.

 



Rajendra K. Bordia
Clemson University.
Соединённые Штаты Америки
PhD, Professor and Chair, Department of Materials Science and Engineering.


Eugene A. Olevsky
San Diego State University.
Соединённые Штаты Америки
PhD, Distinguished Professor and Director, Powder Technology Laboratory.


Список литературы

1. Frenkel J. Viscous f low of crystalline bodies under the action of surface tension. J. Phys.1945. Vol. 9. P. 385—391.

2. Pines B.Y. On sintering in the solid phase. Zh. Tekh. Fiz. 1946. Vol. 16. P. 737—745.

3. Kang S.J.L. Sintering: Densification, grain growth and microstructure. Oxford: Elsevier Butterworth-Heinemann, 2005.

4. Bordia R.K., Kang S.J.L., Olevsky E.A.Current understanding and future research directions at the onset of the next century of sintering science and technology. J. Am. Ceram. Soc.2017. Vol. 100. P. 2314—2352.

5. Kingery W.D., Berg M. Study of the initial stages of sintering solids by viscous f low, evaporation-condensation and self-diffusion.J. Appl. Phys. 1955. Vol. 26. P. 1205—1212.

6. Coble R.L. Sintering crystalline solids. I. Intermediate and final state diffusion models. J. Appl. Phys. 1961. Vol. 32. P. 787—79 2 .

7. Ashby M.F.A first report on sintering diagrams. Acta Metall. 1974. Vol. 22. P. 275—289.

8. Wakai F.Modeling and simulation of elementary processes in ideal sintering. J. Am. Ceram. Soc. 2006. Vol. 89. P. 1471—1484.

9. Brook R.J. Pore-grain boundary interactions and grain growth. J. Am. Ceram. Soc. 1969. Vol. 52. P. 56—57.

10. Hsueh C.H., Evans A.G., Coble R.L. Microstructure development during final/intermediate stage sintering. I. Pore/grain boundary separation. Acta Metall.1982. Vol. 30. P. 1269—1279.

11. Svoboda J., Riedel H., Zipse H. Equilibrium pore surfaces, sintering stresses and constitutive equations for the intermediate and late stages of sintering. I. Computation of equilibrium surfaces. Acta Metall. Mater.1994. Vol. 42. P. 435 —4 43.

12. Kang S.J.L., Jung Y.I. Sintering kinetics at final stage sintering: model calculation and map construction. Acta Mater.2004. Vol. 52. P. 4573—4578.

13. Sk or ok hod V.V. Rheological basis of theory of sintering. Kiev: Nauk. dumka, 1972.

14. Bordia R.K., Scherer G.W.On constrained sintering. I. Constitutive model for a sintering body. Acta Metall. 1988. Vol. 36. P. 2393—2397.

15. Bordia R.K., Scherer G.W. On constrained sintering. II. Comparison of constitutive models. Acta Metall. 1988. Vol. 36. P. 2399—2409.

16. Olevsky E.A., Tikare V., Garino T. Multi-scale study of sintering: A review. J Am. Ceram. Soc. 2006. Vol. 89. P. 1914 —19 2 2 .

17. Green D.J., Guillon O., Rödel J.Constrained sintering: A delicate balance of scales. J. Eur. Ceram. Soc. 2008. Vol. 28. P. 1451—1466.

18. Martin C.L., Bordia R.K. The effect of a substrate on the sintering of constrained films. Acta Mater.2009. Vol. 57. P. 5 49 —558 .

19. Choi S.Y., Kang S.J.L. Sintering kinetics by structural transition at grain boundaries in barium titanate. Acta Mater. 2004. Vol. 52. P. 2937—2943.

20. Kang S.J.L, Lee M.G., An S.M. Microstructural evolution during sintering with control of the interface structure. J. Am. Ceram. Soc.2009. Vol. 92. P. 1464—1471.

21. Lee M.G., Chung S.Y., Kang S.J.L. Boundary faceting-dependent densification in a BaTiO3 model system. Acta Mater. 2011. Vol. 59. P. 692—698.

22. An S.M., Yoon B.K., Chung S.Y. et al. Nonlinear driving force—velocity relationship for the migration of faceted boundaries. Acta Mater. 2012. Vol. 60. P. 4531—4539.

23. Jung S.H., Kang S.J.L. Repetitive grain growth behavior with increasing temperature and grain boundary roughening in a model nickel system. Acta Mater. 2014. Vol. 69. P. 283—291.

24. Harmer M.P., Brook R.J.Fast firing-microstructural benefits. Trans. J. Brit. Ceram. Soc.1981. Vol. 80. P. 147—148.

25. Chen I.W., Wang X.H. Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature. 2000. Vol. 404. P. 168—171.

26. Coble R.L.Diffusion models for hot pressing with surface energy and pressure effects as driving forces. J. Appl. Phys. 1970. Vol. 41. P. 4798—4807.

27. Swinkels F.B., Wilkinson D.S., Arzt E., Ashby M.F.Mechanisms of hot-isostatic pressing. Acta Metall.1983. Vol. 31. P. 182 9 —18 4 0.

28. Fedorchenko I.M., Burenkov G.L., Raichenko A.I. et al. Electrodischarge reaction sintering of powder mixtures. Dokl. Akad. Nauk SSSR. 1977. Vol. 236. P. 585—588.

29. Grasso S., Sakka Y., Maizza G.Electric current activated/assisted sintering (ECAS): A review of patents 1906—2008. Sci. Tech. Adv. Mater. 2009. Vol. 10. P. 053 0 01.2 93 0.

30. Garay J.E. Current-activated, pressure-assisted densification of materials. Ann. Rev. Mater. Res. 2010. Vol. 40. P. 4 45 —4 6 8 .

31. Olevsky E.A., Bradbury W.L., Haines C.D. et al. Fundamental aspects of spark plasma sintering. I. Experimental analysis of scalability. J. Am. Ceram. Soc. 2012. Vol. 95. P. 2 4 0 6 —2 413.

32. Olevsky E., Aleksandrova E., Ilyina A. et al. Outside mainstream electronic databases: Review of studies conducted in the USSR and post-Soviet countries on electric current-assisted consolidation of powder materials. Mater. 2013. Vol. 6. P. 4375—4440.

33. Cologna M., Rashkova B., Raj R. Flash sintering of nanograin zirconia in < 5 s at 850 °C. J. Am. Ceram. Soc.2010. Vol. 93. P. 3556—3559.

34. Dong Y., Chen I.W. Onset criterion for f lash sintering. J. Am. Ceram. Soc.2015. Vol. 98. P. 3624—3627.35. Olevsky E.A., Dudina D.V. Field-assisted sintering: Science and applications. Springer Nature IP, 2018.


Для цитирования:


Kang S.L., Bordia R.K., Olevsky E.A. Emerging challenges in solid-state sintering science and technology. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya. 2018;(4):28-31. https://doi.org/10.17073/1997-308X-2018-4-28-31

For citation:


Kang S.L., Bordia R.K., Olevsky E.A. Emerging challenges in solid-state sintering science and technology. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya. 2018;(4):28-31. https://doi.org/10.17073/1997-308X-2018-4-28-31

Просмотров: 196


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)