Preview

Известия вузов. Порошковая металлургия и функциональные покрытия

Расширенный поиск

Перспективы нанотехнологии и дизайна материалов на основе тугоплавких соединений

https://doi.org/10.17073/1997-308X-2018-4-73-81

Аннотация

В порядке дискуссии рассмотрены перспективы развития высокотемпературного керамического материаловедения. Дано обоснование разработки гетеромодульных керамических композитов как возможности реализации уникальных физико-химических свойств тугоплавких соединений (карбидов, нитридов, боридов и др.) в условиях их применения при высоких и сверхвысоких температурах. Показаны перспективы нанотехнологического подхода к получению подобных материалов в инженерной практике.

Об авторе

И. Л. Шабалин
Университет Салфорда.
Великобритания

Доктор, профессор Центра физического материаловедения.

Салфорд Кресент, Манчестер, M5 4WT, Соединенное Королевство.



Список литературы

1. Shabalin I.L. Advances in materials science of metals, ceramics, and composites at the turn of the millennium. Powder Metall. Met. Ceram. 2009. Vol. 48. Iss. 9—10. P. 610—612.

2. Shabalin I.L. Ultra-high temperature materials. Vol. I. Carbon (graphene/graphite) and refractory metals. Dordrecht, London: Springer Science, 2014.

3. Samsonov G.V., Obolonchik V.A. Frederic Henri Moissan, on the 120th anniversary of his birth. Powder Metall. Met. Ceram. 1972. Vol. 11. Iss. 9. P. 766—768.

4. Гнесин Г.Г. Материаловеды: ученые, инженеры, изобретатели. Киев: Логос, 2010.

5. Gubanov V.A., Ivanovsky A.L., Zhukov V.P. Electronic structure of refractory carbides and nitrides. Cambridge: Cambridge University Press, 1994.

6. Upadhyaya G.S. Nature and properties of refractory carbides. Commack, New York: Nova Science, 1996.

7. Shabalin I.L. Ultra-high temperature materials. Vol. II. Refractory carbides I (Ta, Hf, Nb and Zr carbides). Dordrecht, London: Springer Science, 2018 (in press).

8. Spriggs G.E. A history of fine grained hardmetal. Int. J. Refract. Met. Hard Mater. 1995. Vol. 13. P. 241—255.

9. Кислый П.С., Боднарук Н.И., Боровикова М.С. и др. Керметы. Киев: Наук. думка, 1985.

10. Shabalin I.L., Wang Y., Krynkin A.V. et al. Physicomechanical properties of ultrahigh temperature heteromodulus ceramics based on group 4 transition metal carbides. Adv. Appl. Ceram. 2010. Vol. 109. Iss. 7. P. 405—415.

11. Jeitschko W., Nowotny H. Die kristallstruktur von Ti3SiC2 — ein neuer komplexcarbid-typ. Monatsh. Chem. 1967. Vol. 98. Iss. 2. P. 329—337.

12. Nowotny H. Strukturchemie einiger verbindungen der übergangsmetalle mit den elementen C, Si, Ge, Sn. Prog. Solid State Chem. 1970. Vol. 2. P. 27—70.

13. Barsoum M.W. MAX phases. Properties of machinable ternary carbides and nitrides. Weinheim: Wiley-VCH, 2013.

14. Hasselman D.P.H. Experimental and calculated Young’s moduli of zirconium carbide containing a dispersed phase of graphite. J. Am. Ceram. Soc. 1963. Vol. 46. Iss. 2. P. 103—104.

15. Hasselman D.P.H., Becher P.F., Mazdiyasni K.S. Analysis of the resistance of high-E, low-E brittle composites to failure by thermal shock. Z. Werkstofftech. 1980. Bd. 11. No. 3. S. 82—92.

16. Kendall E.G., Carnahan R.D., Rossi R.C. Hypereutectic carbides highly resistant to thermal shock. Space/Aeronautics. 1967. Vol. 47. Iss. 1. P. 132—133, 135.

17. Шабалин И.Л., Бекетов А.Р., Власов В.Г., Пахолков В.В. К вопросу о получении карбидно-углеродных композитов горячим прессованием. В сб.: Горячее прессование. Киев: ИПМ АН УССР, 1977. Ч. 2. С. 15—18.

18. Kendall K. Control of cracks by interfaces in composites. Proc. R. Soc. Lond. 1975. Vol. 341. P. 409—428.

19. Kendall K. Transition between cohesive and interfacial failure in a laminate. Proc. R. Soc. Lond. 1975. Vol. 344. P. 287—302.

20. Cook J., Gordon J.E., Evans C.C., Marsh D.M. A mechanism for the control of crack propagation in all-brittle systems. Proc. R. Soc. Lond. 1964. Vol. 282. P. 508—520.

21. Hasselman D.P.H. Figures-of-merit for the thermal stress resistance of high-temperature brittle materials: a review. Ceramurg. Int. 1978. Vol. 4. Iss. 4. P. 147—150.

22. Hasselman D.P.H., Donaldson K.Y. Designing for severe thermal stresses. In: An introduction to ceramic engineering design. Westerville, OH: The American Ceramic Society, 2002. P. 177—198.

23. Shabalin I.L. Principles of property optimization and composition selection for hetero-modulus ceramics based on refractory carbides. In: Materials science of refractory compounds: achievements and problems: Proc. Int. conf. devoted to the 90th birthday anniversary of Acad. G.V. Samsonov (27—29 May 2008). Kiev: National Academy of Science of Ukraine, 2008. P. 9—10.

24. Shabalin I.L. TSR of hetero-modulus ceramics. In: Encyclopedia of thermal stresses. Dordrecht: Springer, 2014. Vol. 11. P. 6250—6255.

25. Harada Y. High strength hot-pressed metal carbide — graphite composites: Report NASA-CR-77114. Chicago, IL: IIT Research Institute, 1966.

26. Андриевский Р.А., Ланин А.Г., Рымашевский Г.А. Прочность тугоплавких соединений. М.: Металлургия, 1974.

27. Аndrievsky R.А., Lanin А.G., Rymashevsky G.А. Strength of refractory compounds. Moscow: Metallurgiya, 1974 (In Russ.).

28. Shabalin I.L., Tomkinson D.M., Shabalin L.I. High-temperature hot-pressing of titanium carbide — graphite hetero-modulus ceramics. J. Eur. Ceram. Soc. 2007. Vol. 27. Iss. 5. P. 2171—2181.

29. Shabalin I.L. «Ridge effect» in oxidation kinetics of hetero-modulus ceramics based on titanium carbide. Powder Metall. Met. Ceram. 2008. Vol. 47. Iss. 1—2. P. 137—150.

30. Shabalin I.L. Oxidation behaviour of hetero-modulus ceramics based on titanium carbide. In: Developments in strategic materials: Collection of papers 32nd Int. conf. on advanced ceramics and composites (Daytona Beach, FL, 27 Jan. — 1 Febr. 2008). N.Y.: John Wiley, 2009. P. 261—278.

31. Novoselov K.S., Geim A.K., Morozov S.V. et al. Electric field effect in atomically thin carbon films. Science. 2004. Vol. 306. Iss. 5696. P. 666—669.

32. Novoselov K.S., Falko V.I., Colombo L. et al. A roadmap for graphene. Nature. 2012. Vol. 490. Iss. 7419. P. 192—200.

33. Naguib M., Kurtoglu M., Presser V. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011. Vol. 23. Iss. 37. P. 4248—4253.

34. Naguib M., Gogotsi Y. Synthesis of two-dimensional materials by selective extraction. Acc. Chem. Res. 2015. Vol. 48. Iss. 1. P. 128—135.

35. Gogotsi Y. Not just graphene: the wonderful world of carbon and related nanomaterials. MRS Bull. Vol. 40. Iss. 12. P. 1110—1120.

36. Lipatov A., Lu H., Alhabed M. et al. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci. Adv. 2018. Vol. 4. Iss. 6. No. eaat0491.

37. Khazaei M., Arai M., Sasaki T. et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 2013. Vol. 23. Iss. 17. P. 2185—2192.

38. Zych Ł., Rutkowski P., Stobierski L. et al. The manufacturing and properties of a nano-laminate derived from graphene powder. Carbon. 2015. Vol. 95. P. 809—817.

39. Shabalin I.L. Nanotechnological advances in the hetero-structural materials design of ceramics. In: Proc. 5th Int. conf. «HighMatTech» (5—8 Oct. 2015). Kiev: National Academy of Science of Ukraine, 2015. P. 33—34.


Рецензия

Для цитирования:


Шабалин И.Л. Перспективы нанотехнологии и дизайна материалов на основе тугоплавких соединений. Известия вузов. Порошковая металлургия и функциональные покрытия. 2018;(4):73-81. https://doi.org/10.17073/1997-308X-2018-4-73-81

For citation:


Shabalin I.L. Prospects of nanotechnology and materials design on the basis of refractory compounds. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2018;(4):73-81. (In Russ.) https://doi.org/10.17073/1997-308X-2018-4-73-81

Просмотров: 858


Creative Commons License
Контент доступен под лицензией Attribution-NonCommercial-NoDerivatives 4.0 International.


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)