Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Hybrid technology combining electrospark alloying, cathodic arc evaporation and magnetron sputtering for hard wear-resistant coating deposition

https://doi.org/10.17073/1997-308X-2018-4-92-103

Abstract

The novel technology of multilayer coating deposition combining electric-spark alloying (ESA), pulsed arc evaporation (PAE), and magnetron sputtering (MS) in one vacuum process is presented. Layers can be deposited using a single electrode material at operating pressures from 0,1 Pa to atmospheric pressure. The lower ESA layer provides increased substrate toughness, perfect adhesion and a relatively high (up to 100 μm) coating thickness. The upper PAE or MS layer up to 10 μm in thickness provides high mechanical and tribological characteristics. The technology of double-layer PAE–ESA and MS–ESA coating deposition was tested on substrates made of structural and tool steels, titanium alloys using electrodes of cemented carbides (WC–Co, TiCNiAl) and carbon (low-porous graphite).

About the Authors

A. N. Sheveyko
National University of Science and Technology (NUST) «MISIS».
Russian Federation

Research scientist of the Scientific-educational Centre of SHS.

119049, Russia, Moscow, Leninskii pr., 4.



K. A. Kuptsov
National University of Science and Technology (NUST) «MISIS».
Russian Federation

Cand. Sci. (Tech.), junior research scientist of the Scientific-educational Centre of SHS.

119049, Russia, Moscow, Leninskii pr., 4.



Ph. V. Kiryukhantsev-Korneev
National University of Science and Technology (NUST) «MISIS».
Russian Federation

Cand. Sci. (Tech.), leading research scientist of the Scientific-educational Centre of SHS, associate prof. of the Department of powder metallurgy and functional coatings (PM&FC).

119049, Russia, Moscow, Leninskii pr., 4.



E. A. Levashov
National University of Science and Technology (NUST) «MISIS».
Russian Federation

Dr. Sci. (Tech.), prof., acad. of Russian Academy of Natural Science, head of Scientific-educational Centre of SHS.

119049, Russia, Moscow, Leninskii pr., 4.



D. V. Shtansky
National University of Science and Technology (NUST) «MISIS».
Russian Federation

Dr. Sci. (Phys.-Math.), principal scientist of the Scientific-educational Centre of SHS, prof. of the Department of PM&FC, head of the Research laboratory «Inorganic nanomaterials».

119049, Russia, Moscow, Leninskii pr., 4.



References

1. He P., Qian Y.Y., Chang Z.L., Wang. R.J. Adhesion behavior of WC coating deposited on titanium alloy by electrospark deposition. Solid State Phenomena. 2007. Vol. 127. P. 325—330.

2. Johnson R.N., Sheldon G.L. Advances in the electrospark deposition coating process. J. Vac. Sci. Technol. A. 1986. Vol. 4. No. 6. P. 2740—2746.

3. Li C., Chen D., Chen W., Wang L., Luo D. Corrosion behavior of TiZrNiCuBe metallic glass coatings synthesized by electrospark deposition. Corros. Sci. 2014. Vol. 84. P. 96—102.

4. Kumar S., Singh R., Singh T.P., Sethi B.L. Surface modification by electrical discharge machining: A review. J. Mater. Process. Technol. 2009. Vol. 209. P. 3675—3687.

5. Tang J. Mechanical and tribological properties of the TiC—TiB2 composite coating deposited on 40Cr-steel by electrospark deposition. Appl. Surf. Sci. 2016. Vol. 365. P. 202—208.

6. Chen Z., Zhou Y. Surface modification of resistance welding electrode by electro-spark deposited composite coatings. Pt. I. Coating characterization. Surf. Coat. Technol. 2006. Vol. 201. P. 1503—1510.

7. Radek N., Bartkowiak K. Laser treatment of electro-spark coatings deposited in the carbon steel substrate with using nanostructured WC—Cu electrodes. Phys. Procedia. 2012. Vol. 39. P. 295—301.

8. Lazarenko B.R., Lazarenko N.I., Bakal S.Z. Some features of the process of electrospark alloying of metal surfaces in vacuum. Elektronnaya obrabotka materialov. 1969. No. 4. P. 27—30 (In Russ.).

9. Kornienko L.P., Chernova G.P., Mihailov V.V., Gitlevich A.E. Use of the electrospark alloying method to increase the corrosion resistance of a titanium surface. Surf. Eng. Appl. Electrochem. 2011. Vol. 47. P. 9—17.

10. Mikhailov V.V., Gitlevich A.E., Verkhoturov A.D., Mikhailyuk A.I., Belyakov A.V., Konevtsov L.A. Electrospark alloying of titanium and its alloys: The physical, technological, and practical aspects. Pt. I. The peculiarities of the mass transfer and the structural and phase transformations in the surface layers and their wear and heat resistance. Surf. Eng. Appl. Electrochem. 2013. Vol. 49. P. 373—395.

11. Witke T., Schuelke T., Schultrich B., Siemroth P., Vetter J. Comparison of filtered high-current pulsed arc deposition (ϕ-HCA) with conventional vacuum arc methods. Surf. Coat. Technol. 2000. Vol. 126. P. 81—88.

12. Kiryukhantsev-Korneev Ph.V., Sheveyko A.N., Kuptsov K.A., Novikov A.V., Shtansky D.V. Ti—Cr—B—N coatings prepared by pulsed cathodic-arc evaporation of ceramic TiCrB target produced by SHS. Prot. Met. Phys. Chem. Surf. 2013. Vol. 49. P. 677—681.

13. Urquia E.E.R., Wolke J.G.C., Riet J., Kotnur G.V., Janssen G.C.A.M., Jansen J.A., Beucken J.J.P. Residual stress evaluation within hydroxyapatite coatings of different micrometer thicknesses. Surf. Coat. Technol. 2015. Vol. 266. P. 177—182.

14. Roshanghias A., Khatibi G., Pelzer R., Steinbrenner J. On the effects of thickness on adhesion of TiW diffusion barrier coatings in silicon integrated circuits. Surf. Coat. Technol. 2014. Vol. 259. P. 386—392.

15. Illarionov A.G., Popov A.A. Technological and operational properties of titanium alloys. Ekaterinburg: Izd-vo Ural’skogo un-ta, 2014 (In Russ.).

16. Wang R., Qian Y., Liu J. Interface behavior study of WC92—Co8 coating produced by electrospark deposition. Appl. Surf. Sci. 2005. Vol. 240. P. 42—47.

17. Wang R.J., Qian Y.Y., Liu J. Structural and interfacial analysis of WC92—Co8 coating deposited on titanium alloy by electrospark deposition. Appl. Surf. Sci. 2004. Vol. 228. P. 405—409.

18. Levashov E.A., Zamulaeva E.I., Kudryashov A.E., Vakaev P.V., Petrzhik M.I., Sanz A.Materials science and technological aspects of electrospark deposition of nanostructured WC—Co coatings onto titanium substrates. Plasma Process and Polymers. 2007. Vol. 4. P. 293—300.

19. Vreeling J.A., Ocelík V., De Hosson J.T.M. Ti—6Al—4V strengthened by laser melt injection of WCp рarticles. Acta Mater. 2002. Vol. 50. P. 4913—4924.

20. Li L., Liu D., Chen Y., Wang C., Li F. Electron microscopy study of reaction layers between single-crystal WC particle and Ti—6Al—4V after laser melt injection. Acta Mater. 2009. Vol. 57. P. 3606—3614.

21. Cassar G., Matthews A., Leyland A. Triode plasma diffusion treatment of titanium alloys. Surf. Coat. Technol. 2012. Vol. 212. P. 20—31.

22. Wang W., Pelenovich V.O., Yousaf M.I., Yan S., Bin H., Wang Z., Tolstogouzov A.B., Kumar P., Yang B., Fu D.J. Microstructure, mechanical and tribological properties of WC/a-C:H coatings deposited by cathodic arc ion-plating. Vacuum. 2016. Vol. 132. P. 31—39.

23. Halim Kovaci, Ali Fatih Yetim, Özlem Baran, Ayhan Çelik. Tribological behavior of DLC films and duplex ceramic coatings under different sliding conditions. Ceram. Int. 2018. Vol. 44. P. 7151—7158.


Review

For citations:


Sheveyko A.N., Kuptsov K.A., Kiryukhantsev-Korneev P.V., Levashov E.A., Shtansky D.V. Hybrid technology combining electrospark alloying, cathodic arc evaporation and magnetron sputtering for hard wear-resistant coating deposition. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2018;(4):92-103. (In Russ.) https://doi.org/10.17073/1997-308X-2018-4-92-103

Views: 1013


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)