Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

The effect of aluminum additives on the content and parameters of the fine structure of titanium carbosilicide in SHS powders

https://doi.org/10.17073/1997-308X-2019-1-22-29

Abstract

The dependence of the phase composition and parameters of the fine structure of titanium carbosilicide in powders obtained by the self-propagating high-temperature synthesis on the concentration of aluminum in the 5Ti/2SiC/1C reaction mixture was investigated. The aluminum concentration was varied in the range of 0.1–0.4 mole fraction while maintaining the total carbon content. It has been established that aluminum additives not only affect the yield of titanium carbosilicide, but also contribute to the predominant formation of Ti5Si3 instead of TiSi2 in synthesis products, which is identified in non-aluminum powders. The introduction of a small amount of aluminum (0.1 mole fraction) leads to the formation of a solid solution of Ti3Si1–xAlxC2 and reduces the content of impurity phases in SHS powders by 6 %. With a higher aluminum content in the reaction mixture, the concentration of carbosilicide in SHS powders decreases, and that of binary compounds (TiC, Ti5Si3, TiAl) increases accordingly. Within the concentration range of 0.1–0.25 mole fraction, no noticeable effect was observed from the introduction of aluminum on the crystal lattice parameters of titanium carbosilicide in SHS powders. A significant increase in the parameters a and c of Ti3Si1–xAlxC2 (from a = 3.067 Å, c = 17.67 Å to a = 3.07 Å, c = 17.73 Å) while maintaining the ratio with с/a within known values (с/a = 5.78) is observed only when the aluminum concentration is 0.4 mole fraction. The crystallite size of titanium carbosilicide depends primarily on the burning parameters. At the same time, the deformation of the Ti3Si1–xAlxC2 crystal lattice in SHS powders monotonically grows with increasing aluminum content in the reaction mixture in the investigated concentration range.

About the Authors

T. L. Talako
State Scientific Institution «O.V. Roman Powder Metallurgy Institute».
Belarus

 Dr. Sci. (Tech.), principal researcher of the laboratory «New materials and technologies».

220005, Minsk, Platonov str., 41.



A. I. Letsko
State Scientific Institution «O.V. Roman Powder Metallurgy Institute».
Belarus

 Cand. Sci. (Tech.), associate prof., head of the laboratory «New materials and technologies».

220005, Minsk, Platonov str., 41.



Yu. A. Reutsionak
State Scientific Institution «O.V. Roman Powder Metallurgy Institute».
Belarus
Research assistant of the laboratory «New materials and technologies»,


A. P. Abramchuk
State Scientific Institution «O.V. Roman Powder Metallurgy Institute».
Belarus
Engineer of the Laboratory of physics of metals.


S. A. Oglezneva
Perm National Research Polytechnic University (PNRPU).
Russian Federation

 Dr. Sci. (Tech.), prof., scientific head of the Scientific Centre of powder materials science.

614013, Perm, Komsomolskii pr., 29.



M. N. Kachenyuk
Perm National Research Polytechnic University (PNRPU).
Russian Federation

  Cand. Sci. (Tech.), associate prof., Scientific Centre of powder materials science. 

614013, Perm, Komsomolskii pr., 29.



A. A. Smetkin
Perm National Research Polytechnic University (PNRPU).
Russian Federation

 Cand. Sci. (Tech.), associate prof., Scientific Centre of powder materials science.

614013, Perm, Komsomolskii pr., 29.



References

1. Barsoum M.W., El-Raghy T. Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J. Am. Ceram. Soc. 1996. Vol. 79. P. 1953—1956. http://doi.org/ 10.1111/j.1151-2916.1996.tb08018.x.

2. Barsoum M.W., Brodkin D., El-Raghy T. Layered machinable ceramics for high temperature applications. Scripta Mater. 1997. Vol. 36. P. 535—541.

3. Barsoum M.W., El-Raghy T., Radovic M. Ti3SiC2: A layered machinable ductile carbide. Interceram. 2000. Vol. 49. P. 226—233.

4. Zhang Z.F., Sun Z.M., Hashimoto H. Deformation and fracture behavior of ternary compound Ti3SiC2 at 25— 1300 °C. J. Mater. Lett. 2003. No. 57. P. 1295—1299.

5. Sun Z.M. Progress in research and development on MAX phases: a family of layered ternary compounds. Int. Mater. Rev. 2011. Vol. 56. P. 143—166. http://doi.org/10.1179/174 3280410Y.0000000001.

6. Istomin P.V., Nadutkin A.V., Ryabkov Yu.I., Goldin B.A. Preparation of Ti3SiC2. Neorganicheskie materialy. 2006. Vol. 42. No. 3. P. 292—297 (In Russ.).

7. Pampuch R., Lis J., Stobierski L., Tymkiewicz M. Solid combustion synthesis of Ti3SiC2. J. Eur. Ceram. Soc. 1989. Vol. 5. P. 283—287. http://doi.org/10.1016/0955-2219(89)90022-8.

8. Lis J., Miyamoto Y., Pampuch R., Tanihata K. Ti3SiC2-based materials prepared by HIP-SHS Techniques. Mater. Lett. 1995. Vol. 22. P. 163—168.

9. Grigoryan A.E., Rogachev А.S., Sychev A.E., Levashov E.A. SHS and the formation of the structure of composite materials in the three-component systems Ti—Si—C, Ti— Si—N, and Ti—B—N. Ogneupory i tekhnicheskaya keramika. 1999. No. 11. P. 7—11 (In Russ.).

10. Riley D.P., Kisi E.H., Hansen T.C., Hewat A.W. Self-propagating high-temperature synthesis of Ti3SiC2: I. Ultrahigh-speed neutron diffraction study of the reaction mechanism. J. Am. Ceram. Soc. 2002. Vol. 85. P. 2417— 2424. http://doi.org/10.1111/j.1151-2916.2002.tb00474.x.

11. Vadchenko S.G., Sytschev A.E., Kovalev D.Yu., Shchukin A.S., Konovalikhin S.V. Self-propagating high-temperature synthesis in the Ti—Si—C system: Features of product patterning. Nanotechnol. in Russia. 2015. Vol. 10. No. 1—2. P. 67—74.

12. Radishevsky V.L., Lepakova O.K., Afanasyev N.I. Synthesis, structure and properties of MAX phases Ti3SiC2 and Nb2AlC. Vestnik Tomskogo gosudarstvennogo universiteta. Khimiya. 2015. No. 1. P. 33—38 (In Russ.).

13. Tayebifard S.A., Yazdani-Rad R. The effect of Si substitution for SiC on SHS in the Ti—Si—C system. Int. J. SHS. 2018. Vol. 27. No. 1. P. 51—54. http://doi.org/10.3103/ S1061386218010107.

14. Jeitschko W., Novotny H. Die Kristallstructur Ti3SiC2 — Ein Neuer Komplexcarbid-Typ. Monatash. Chem. 1967. Vol. 98. P. 329—337.

15. Medvedeva N.I., Ynyashin A.N., Ivanovskiy A.L. Modeling of electronic structure, chemical bond and properties of ternary silicocarbide Ti3SiC2. Zhurnal strukturnoi khimii. 2011. Vol. 52. No. 4. P. 806—822 (In Russ.).

16. El-Raghy T., Barsoum M.W. Processing and mechanical properties of Ti3SiC2: I. Reaction path and microstructure evolution. J. Am. Ceram. Soc. 1999. Vol. 82. P. 2849— 2854.

17. Wu E., Kisi E.H., Kennedy S.J., Studer A.J. In situ neutron powder diffraction study of Ti3SiC2 synthesis. J. Am. Ceram. Soc. 2001. Vol. 84. P. 2281—2288. http://doi. org/10.1111/j.1151-2916.2001.tb01003.x.

18. Wu E., Kisi E.H., Riley D.P., Smith R.I. Intermediate phases in Ti 3SiC2 synthesis from Тi/SiC/C mixtures studied by time-resolved neutron diffraction. J. Amer. Cer. Soc. 2004. Vol. 85. P. 3084—3086. http://doi. org/10.1111/j.1151-2916.2002.tb00584.x.

19. Wu E., Riley D.P., Kisi E.H., Smith R.I. Reaction kinetics in Ti3SiC2 synthesis studied by time-resolved neutron diffraction. J. Eur. Ceram. Soc. 2005. Vol. 25. P. 3503—3508. http://doi.10.1016/j.jeurceramsoc. 2004.09.005.

20. Riley D.P., Kisi E.H., Phelan D. SHS of Ti3SiC2: ignition temperature depression by mechanical activation. J. Eur. Ceram. Soc. 2006. Vol. 26. P. 1051—1058.

21. Kisi E.H., Hansen T.C., Hewat A.W. Self-propagating high-temperature synthesis of Ti3SiC2 from 3Ti + SiC + C reactants. J. Mater. Sci. Lett. 2003. Vol. 22. P. 1101— 1104.

22. Zhang Z.F., Sun Z.M., Hashimoto H., Abe T. Application of pulse discharge sintering (PDS) technique to rapid synthesis of Ti3SiC2 from Ti/Si/C powders. J. Eur. Ceram. Soc. 2002. Vol. 22. P. 2957—2961.

23. Sun Z.M., Yang S., Hashimoto H. Ti3SiC2 powder synthesis. Ceram. Int. 2004. Vol. 30. P. 1873—1877.

24. Zhang Z.F., Sun Z.M., Hashimoto H., Abe T. A new synthesis reaction of Ti3SiC2 from Ti/TiSi2/TiC powder mixtures through pulse discharge sintering (PDS) technique. Mater. Res. Innovat. 2002. Vol. 5. P. 185—189.

25. Yang S., Sun Z.M., Hashimoto H. Reaction in Ti3SiC2 powder synthesis from a Ti—Si—TiC powder mixture. J. Alloys Compd. 2004. Vol. 368. P. 312—317.

26. Yeh C.L., Shen Y.G. Effects of TiC addition on formation of Ti3SiC2 by self-propagating high-temperature synthesis. J. Alloys Compd. 2008. Vol. 458. P. 286—291.

27. Yeh C.L., Shen Y.G. Effects of SiC addition on formation of Ti3SiC2 by self-propagating high-temperature synthesis. J. Alloys Compd. 2008. Vol. 461. P. 654—660.

28. Zhou Y.C., Zhang H.B., Liu M.Y., Wang J.Y., Bao Y.W. Preparation of TiC free Ti3SiC2 with improved oxidation resistance by substitution of Si with Al. Mater. Res. Innovat. 2004. Vol. 8. P. 97—102. http://doi.10.1080/ 14328917.2004.11784838.

29. Zhang H.B., Zhou Y.C., Bao Y.W., Li M.S., Wang J.Y. Intermediate phases in synthesis of Ti3SiC2 and Ti3Si(Al)C2 solid solutions from elemental powders J. Eur. Ceram. Soc. 2006. Vol. 26. P. 2373—2380.

30. Yang S., Sun Z.M., Yang Q., Hashimoto H. Effect of Al addition on the synthesis of Ti3SiC2 bulk material by pulse discharge sintering process. J. Eur. Ceram. Soc . 2007. Vol. 27. P. 4807—4812. http://doi.org/10.1524/ zpch. 2005.219.10_2005.1411.

31. Zhang Z.F., Sun Z.M., Hashimoto H. Low temperature synthesis of Ti3SiC2 from Ti/SiC/C powders. Mater. Sci. Technol. 2004. Vol. 20 P. 1252—1256. http://doi.org/ 10.1179/026708304X6103.

32. Bish D.L., Howard S.A. Quantitative phase analysis using the rietveld method. J. Appl. Cryst. 1988. Vol. 21. P. 86—91.


Review

For citations:


Talako T.L., Letsko A.I., Reutsionak Yu.A., Abramchuk A.P., Oglezneva S.A., Kachenyuk M.N., Smetkin A.A. The effect of aluminum additives on the content and parameters of the fine structure of titanium carbosilicide in SHS powders. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2019;(1):22-29. (In Russ.) https://doi.org/10.17073/1997-308X-2019-1-22-29

Views: 821


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)