Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Magnesiothermal synthesis and consolidation of multicomponent powder ceramics in the Zr–Si–Mo–B system

https://doi.org/10.17073/1997-308X-2019-1-30-41

Abstract

The work aims to obtain composite powder ceramics based on ZrB2–ZrSi2–MoSi2 by the self-propagating high-temperature synthesis (SHS) according to the scheme of magnesium thermal reduction from oxide raw materials, as well as its subsequent consolidation by hot pressing (HP). The combustion of the reaction mixtures is characterized by rather high adiabatic temperatures in the range of 2060 to 2120 K and burning rates in the range of 8,3 to 9,4 g/s. The yield of the end product with magnesiothermal reduction is 34–38 %. The resulting powder contains 13–47 % ZrB2, 21–70 % ZrSi2, 2–32 % ZrSi, and 10–18 % MoSi2 depending on the composition of the initial reaction mixture. It is characterized by high structural homogeneity and consists of composite particles of polyhedral shape with an average about 8 microns in size. The structure of ceramics consolidated by the HP method from SHS powder is homogeneous and includes ZrB2 needle grains distributed in a ZrSi2 matrix, MoSi2 inclusions of various morphology and ZrSiO4 silicate, distributed along the grain boundaries of ZrSi2. The samples obtained by HP are characterized by a high degree of homogeneity of the chemical composition and a residual porosity of 2,5–7,4 %.

About the Authors

A. N. Astapov
Moscow Aviation Institute (National Research University) (MAI).
Russian Federation

Cand. Sci. (Tech.), associate prof. of the Department of advanced materials and technologies for aerospace application. 

125993, Moscow, Volokolamskoe shosse, 4. 



Yu. S. Pogozhev
National University of Science and Technology (NUST) «MISIS»; Scientific-educational centre of self-propagating high-temperature synthesis (SHS) MISIS–ISMAN.
Russian Federation

Cand. Sci. (Tech.), associate prof. of the Department of powder metallurgy and functional coatings of National University of Science and Technology (NUST) «MISIS», senior researcher of the Scientific-educational centre of self-propagating high-temperature synthesis (SHS) MISIS–ISMAN.

119049,  Moscow, Leninskii prospect, 4.



M. V. Lemescheva
National University of Science and Technology (NUST) «MISIS»; Scientific-educational centre of self-propagating high-temperature synthesis (SHS) MISIS–ISMAN.
Russian Federation

 Postgraduate student, engineer of Scientific-educational centre of SHS MISIS–ISMAN. 

119049,  Moscow, Leninskii prospect, 4.



S. I. Rupasov
National University of Science and Technology (NUST) «MISIS».
Russian Federation

Senior research scientist of the Department of powder metallurgy and functional coatings, NUST «MISIS». 

119049,  Moscow, Leninskii prospect, 4.



V. I. Vershinnikov
Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences.
Russian Federation

Cand. Sci. (Tech.), leading research scientist of the Laboratory № 14 of self-propagating high-temperature synthesis.

142432, Moscow region, Chernogolovka, Academician Osipyan str., 8. 



I. P. Lifanov
Moscow Aviation Institute (National Research University) (MAI).
Russian Federation

Postgraduate student of the Department of advanced materials and technologies for aerospace application.

125993, Moscow, Volokolamskoe shosse, 4. 



L. N. Rabinskiy
Moscow Aviation Institute (National Research University) (MAI).
Russian Federation

Dr. Sci. (Phys.-Math.), prof., head of the Department of advanced materials and technologies for aerospace application.

125993, Moscow, Volokolamskoe shosse, 4. 



References

1. Silvestroni L., Failla S., Neshpor I., Grigoriev O. Method to improve the oxidation resistance of ZrB2-based ceramics for reusable space systems. J. Eur. Ceram. Soc. 2018. Vol. 38. Iss. 6. P. 2467—2476. DOI: 10.1016/j.jeurceramsoc.2018.01.025.

2. Levine S.R., Opila E.J., Halbig M.C., Kiser J.D., Singh M., Salem J.A. Evaluation of ultra-high temperature ceramics for aero-propulsion use. J. Eur. Ceram. Soc. 2002. Vol. 22. Iss. 14—15. P. 2757—2767. DOI: 10.1016/S09552219(02)00140-1.

3. Fahrenholtz W.G., Wuchina E.J., Lee W.E., Zhou Y. Ultrahigh temperature ceramics: materials for extreme environment applications. Hoboken, New Jersey: Wiley & Sons Inc, 2014.

4. Balak Z., Zakeri M., Rahimipur M.R., Salahi E., Nasiri H. Effect of open porosity on flexural strength and hardness of ZrB2-based composites. Ceram. Int. 2015. Vol. 41. Iss. 7. P. 8312—8319. DOI: 10.1016/j.ceramint.2015.02.143.

5. Sonber J.K., Murthy T.S.R.C., Subramanian C., Kumar S., Fotedar R.K., Suri A.K. Investigations on synthesis of ZrB2 and development of new composites with HfB2 and TiSi2. Int. J. Refract. Met. Hard Mater. 2011. Vol. 29. Iss. 1. P. 21—30. DOI: 10.1016/j.ijrmhm.2010.06.007.

6. Neuman E.W., Hilmas G.E., Fahrenholtz W.G. Processing, microstructure and mechanical properties of zirconium diboride-boron carbide ceramics. Ceram. Int. 2017. Vol. 43. Iss. 9. P. 6942—6948. DOI: 10.1016/j.ceramint.2017.02.117.

7. Nasseri M.M. Comparison of HfB2 and ZrB2 behaviors for using in nuclear industry. Ann. Nucl. Energy. 2018. Vol. 114. P. 603—606. DOI: 10.1016/j.anucene.2017.12.060.

8. Saunders T., Grasso S., Reece M.J. Limiting oxidation of ZrB2 by application of an electric field across its oxide scale. J. Alloys Compd. 2015. Vol. 653. P. 629—635. DOI: 10.1016/j.jallcom.2015.08.112.

9. Pastor H. Metallic borides: preparation of solid bodies — sintering methods and properties of solid bodies. In: Boron and refractory borides. Ed. V.I. Matkovich. N.Y.: Springer-Verlag, 1977. P. 457—493.

10. Parthasarathy T.A., Rapp R.A., Opeka M.M., Kerans R.J. A model for transitions in oxidation regimes of ZrB2. Mater. Sci. Forum. 2008. Vol. 595—598. P. 823—832. DOI: 10.4028/www.scientific.net/MSF.595-598.823.

11. Parthasarathy T.A., Rapp R.A., Opeka M.M., Kerans R.J. A model for the oxidation of ZrB2, HfB2 and TiB2. Acta Mater. 2007. Vol. 55. Iss. 17. P. 5999—6010. DOI: 10.1016/j. actamat.2007.07.027.

12. Wang Z., Niu Y., Hu C., Li H., Zeng Y., Zheng X., Ren M., Sun J. High temperature oxidation resistance of metal silicide in corporated ZrB2 composite coatings prepared by vacuum plasma spray. Ceram. Int. 2015. Vol. 41. Iss. 10. Pt. B. P. 14868—14875. DOI: 10.1016/j.ceramint. 2015.08.015.

13. Zhang W.-Z., Zeng Y., Gbologah L., Xiong X., Huang B. Preparation and oxidation property of ZrB2—MoSi2/SiC coating on carbon/carbon composites. Trans. Nonferr. Met. Soc. China. 2011. Vol. 21. Iss. 7. P. 1538—1544. DOI: 10.1016/S1003-6326(11)60893-5.

14. Sciti D., Guicciardi S., Bellosi A., Pezzotti G. Properties of a pressureless-sintered ZrB2—MoSi2 ceramic composite. J. Amer. Ceram. Soc. 2006. Vol. 89. Iss. 7. P. 2320—2322. DOI: 10.1111/j.1551-2916.2006.00999.x.

15. Guo S.-Q., Kagawa Y., Nishimura T., Tanaka H. Pressureless sintering and physical properties of ZrB2-based composites with ZrSi2 additive. Scr. Mater. 2008. Vol. 58. Iss. 7. P. 579—582. DOI: 10.1016/j.scriptamat.2007.11.019.

16. Silvestroni L., Meriggi G., Sciti D. Oxidation behavior of ZrB2 composites doped with various transition metal silicides. Corros. Sci. 2014. Vol. 83. P. 281—291. DOI: 10.1016/j.corsci.2014.02.026.

17. Knittel S., Mathieu S., Vilasi M. The oxidation behaviour of uniaxial hot pressed MoSi2 in air from 400 to 1400 °C. Intermetallics. 2011. Vol. 19. Iss. 8. P. 1207—1215. DOI: 10.1016/j.intermet.2011.03.029.

18. Fei X., Niu Y., Ji H., Huang L., Zheng X. Oxidation behavior of ZrO2 reinforced MoSi2 composite coatings fabricated by vacuum plasma spraying technology. J. Therm. Spray Technol. 2010. Vol. 19. Iss. 5. P. 1074—1080. DOI: 10.1007/ s11666-010-9505-0.

19. Potanin A.Yu., Pogozhev Yu.S., Levashov E.A., Novikov A.V., Shvindina N.V., Sviridova T.A. Kinetics and oxidation mechanism of MoSi2—MoB ceramics in the 600— 1200 °C temperature range. Ceram.Int. 2017. Vol. 43. Iss. 13. P. 10478—10486. DOI: 10.1016/j.ceramint.2017.05.093.

20. Wei W.-C.J., Tsung-Ming W. Oxidation of carbon/carbon composite coated with SiC—(Si/ZrSi2)—ZrSi2. Carbon. 1994. Vol. 32. Iss. 4. P. 605—613. DOI: 10.1016/00086223(94)90079-5.

21. Feng T., Li H.-J., Shi X.-H., Yang X., Li Y.-X., Yao X.-Y. Sealing role of B2O3 in MoSi2—CrSi2—Si/B-modified coating for C/C composites. Corr. Sci. 2012. Vol. 60. P. 4—9. DOI: 10.1016/j.corsci.2012.04.018.

22. Chamberlain A.L., Fahrenholtz W.G., Hilmas G.E., Ellerby D.E. High-strength zirconium diboride-based ceramics. J. Am. Ceram. Soc. 2004. Vol. 87. Iss. 6. P. 1170— 1172. DOI: 10.1111/j.1551-2916.2004.01170.x.

23. Monteverde F. The thermal stability in air of hot-pressed diboride matrix composites for uses at ultra-high temperatures. Corros. Sci. 2005. Vol. 47. Iss. 8. P. 2020—2033. DOI: 10.1016/j.corsci.2004.09.019.

24. Rogachev A.S., Mukasyan A.S. Combustion for materials synthesis. N.Y.: Taylor and Francis, 2015.

25. Levashov E.A., Rogachev A.S., Kurbatkina V.V., Maksimov Yu.M., Yukhvid V.I. Promissory materials and processes of self-propagating high-tempera ture synthesis. Moscow: MISIS, 2011 (In Russ.).

26. Borovinskaya I.P., Gromov A.A., Levashov E.A., Maksimov Y.M., Mukasyan A.S., Rogachev A.S. Concise encyclopedia of self-propagating high-temperature synthesis: History, theory, technology, and products. Elsevier, 2017.

27. Wu W.-W., Zhang G.-J., Kan Y.-M., Wang P.-L. Combustion synthesis of ZrB2—SiC composite powders ignited in air. Mater. Lett. 2009. Vol. 63. Iss. 16. P. 1422—1424. DOI: 10.1016/j.matlet.2009.03.038.

28. Khanra A.K., Pathak L.C., Godkhindi M.M. Double SHS of ZrB2 powder. J. Mater. Process. Technol. 2008. Vol. 202. Iss. 1-3. P. 386—390. DOI: 10.1016/j.jmatprotec. 2007.09.007.

29. Сamurlu H.E., Maglia F. Preparation of nano-size ZrB2 powder by self-propagating high-temperature synthesis. J. Eur. Ceram. Soc. 2009. Vol. 29. Iss. 8. P. 1501—1506. DOI: 10.1016/j.jeurceramsoc.2008.09.006.

30. Iatsyuk I.V., Pogozhev Yu.S., Levashov E.A., Novikov A.V., Kochetov N.A., Kovalev D.Yu. Combustion synthesis of high-temperature ZrB2-SiC ceramics. J. Eur. Ceram. Soc. 2018. Vol. 38. Iss. 7. P. 2792—2801. DOI: 10.1016/j. jeurceramsoc.2018.02.016.

31. Mishra S.K., Das S., Ramchandrarao P. Microstructure evolution during sintering of self-propagating high-temperature synthesis produced ZrB2 powder. J. Mater. Res. 2002. Vol. 17. Iss. 11. P. 2809—2814. DOI: 10.1557/ JMR.2002.0408.

32. Licheri R., Orrù R., Musa C., Cao G. Combination of SHS and SPS Techniques for fabrication of fully dense ZrB2— ZrC—SiC composites. Mater. Lett. 2008. Vol. 62. Iss. 3. P. 432—435. DOI: 10.1016/j.matlet.2007.05.066.

33. Hu P., Gui K., Hong W., Zhang X. Preparation of ZrB2— SiC ceramics by single-step and optimized two-step hot pressing using nanosized ZrB2 powders. Mater. Lett. 2017. Vol. 200. P. 14—17. DOI: 10.1016/j.matlet. 2017.04.089.

34. Wu W.-W., Zhang G.-J., Kann Y.-M., Wang P.-L., Vanmeensel K., Vleugelsc J., O. Van der Biest. Synthesis and microstructural features of ZrB2—SiC-based composites by reactive spark plasma sintering and reactive hot pressing. Scr. Mater. 2007. Vol. 57. Iss. 4. P. 317—320. DOI: 10.1016/j.scriptamat.2007.04.025.

35. Pogozhev Yu.S., Iatsyuk I.V., Potanin A.Yu., Levashov E.A., Novikov A.V., Kochetov N.A., Kovalev D.Yu. The kinetics and mechanism of combusted Zr—B—Si mixtures and the structural features of ceramics based on zirconium boride and silicide. Ceram. Int. 2016. Vol. 42. Iss. 15. P. 16758—16765. DOI: 10.1016/j.ceramint.2016.07.157.

36. Stevens R. Zirconia and zirconia ceramics. Twickenham: Magnesium Elektron, 1986.

37. Mihai L.L., Parlatescu I., Gheorghe C., Andreescu C., Bechir A., Pacurar M., Cumpata C.N. In vitro study of the effectiveness to fractures of the aesthetic fixed restorations achieved from zirconium and alumina. Rev. Chim. 2014. Vol. 65. No. 6. P. 725—729.

38. Evans A.G., Cannon R.M. Toughening of brittle solids by martensitic transformations. Acta Metall. 1986. Vol. 34. Iss. 5. P. 761—800. DOI: 10.1016/0001-6160(86)90052-0.

39. Yadav A.K., Ponnilavan V., Kannan S. Crystallization of ZrSiO4 from a SiO2—ZrO2 binary system: The concomitant effects of heat treatment temperature and TiO2 additions. Crystal Growth Design. 2016. Vol. 16. Iss. 9. P. 5493—5500. DOI: 10.1021/acs.cgd.6b00959.


Review

For citations:


Astapov A.N., Pogozhev Yu.S., Lemescheva M.V., Rupasov S.I., Vershinnikov V.I., Lifanov I.P., Rabinskiy L.N. Magnesiothermal synthesis and consolidation of multicomponent powder ceramics in the Zr–Si–Mo–B system. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2019;(1):30-41. (In Russ.) https://doi.org/10.17073/1997-308X-2019-1-30-41

Views: 948


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)