Study of the effect of dispersion and homogeneity of the structure on the properties of powder metastable austenitic carbide steels and diamond tools
https://doi.org/10.17073/1997-308X-2019-1-52-60
Abstract
About the Authors
S. A. OgleznevaRussian Federation
Dr. Sci (Tech.), prof. of the Department of materials, technologies and machine design.
614990, Perm, Komsomolskii pr., 29.
K. L. Saenkov
Russian Federation
Postgraduate student of the Department of materials, technologies and machine design.
614990, Perm, Komsomolskii pr., 29.
A. A. Knyazev
Russian Federation
Postgraduate student of the Department of materials, technologies and machine design.
614990, Perm, Komsomolskii pr., 29.
References
1. Schwartz M. Encyсlopedia of smart materials. N.Y.: Wiley, 2002.
2. Ponge D., MiUán J., Raabe D. Design of lean maraging TRIP steels. In: Advanced Steels. Berlin, Heidelberg: Springer, 2011. P. 199—208. https://doi.org/10.1007/9783-642-17665-4_21.
3. Raabe D., Ponge D, Dmitrieva O., Sander B. Nanoprecipitate-hardened 1.5 GPa steels with unexpected high ductility. Scr. Mater. 2009. Vol. 60. Iss. 12. P. 1141—1144. https://doi.org/10.1016/j.scriptamat.2009.02.062.
4. Roebuck B., Almond E.A., Cottenden A.M. The influence of composition, phase transformation and varying the relative FCC and HCP phase contents on the properties of dilute Co—W—C alloys. Mater. Sci. Eng. A. 1984. Vol. 66. Iss. 2. P. 179—194.
5. Konyashin I., Lachmann F., Ries B., Mazilkin A.A., Straumal B.B., Kübel Chr., Llanes L., Baretzky B. Strengthening zones in the Co matrix of WC—Co cemented carbides. Scr. Mater. 2014. Vol. 83. P. 17—20.
6. Konyashin I., Ries B. Wear damage of cemented carbides with different combinations of WC mean grain size and Co content. Part I. ASTM wear tests. Int. J. Refract. Met. Hard Mater. 2014. Vol. 46. P. 12—19.
7. Konyashin I., Ries B. Wear damage of cemented carbides with different combinations of WC mean grain size and Co content. Part II. Laboratory performance tests on rock cutting and drilling. Int. J. Refract. Met. Hard Mater. 2014. Vol. 45. P. 230—237.
8. Raabe D., Ponge D., Dmitrieva O., Sander B. Designing ultrahigh strength steels with good ductility by combining transformation induced plasticity and martensite aging. Adv. Eng. Mater. 2009. Vol. 11. No. 7. P. 547—555. DOI: 10.1002/adem.200900061.
9. Nambu S., Michiuchi M., Ishimoto Y., Asakura K., Inoue J., Koseki T. Transition in deformation behavior of martensitic steel during large deformation under uniaxial tensile loading . Scr. Mater. 2009. Vol. 4. No. 60. P. 221—224.
10. Antsiferov V.N., Bobrova S.N., Oglezneva S.A., Peshcherenko S.N., Timokhova A.P., Shatsov A.A. Problems of powder materials science. Pt. 1. Ekaterinburg: UrO RAN, 2000 (In Russ.).
11. Kikoin I.K. Tables of physical quantities. Moscow: Atomizdat, 1976 (In Russ.).
12. Tunshoff H.K., Hillmann-Apmann H., Asche J. Diamond tools in stone and civil engineering industry: cutting principles, wear and applications. Diamond Relat. Mater. 2002. Vol. 11. No. 3—6. P. 736—741.
13. Konstanty J., Duk Yong Yoon, Suk-Joong L. Kang, Kwang Yong Eun, Yong-Seog Kim. Powder metallurgy diamond tools — A review of manufacturing routes. Mater. Sci. Forum. 2007. Vol. 534—536. P. 1121—1124. https://doi. org/10.4028/www.scientific.net/MSF.534-536.1121.
14. Arzamasov B.N., Sidorin I.I., Kosolapov G.F. Materials science. Moscow: Mashinostroenie, 1986 (In Russ.).
15. Spriano S., Chen Q., Settineri L., Bugliosi S. Low content and free cobalt matrixes for diamond tools. Wear. 2005. Vol. 259. No. 7—12. P. 1190—1196.
16. Zaitsev A.A., Kurbatkina V.V., Levashov E.A. Features of the effect of nanodispersed additives on the sintering progress and properties of powdered cobalt alloys. Russ. J. NonFerr. Met. 2008. Vol. 49. No. 2. P. 120—125.
17. Konyashin I., Ries B., Hlawatschek D., Zhuk Y., Mazilkin A., Straumal B., Dorn F., Park D. Wear-resistance and hardness: are they directly related for nanostructured hard materials. Int. J. Refract. Met. Hard Mater. 2015. Vol. 49. P. 203—211.
18. Konyashin I., Ries B., Lachmann F., Cooper R., Mazilkin A., Straumal B., Aretz A., Babaev V. Hardmetals with nano-grain reinforced binder: binder fine structure and hardness. Int. J. Refract. Met. Hard Mater. 2008. Vol. 26. P. 583—588.
19. Oglezneva S.A., Bulanov V.Ya., Kontsevoi Yu.V., Ignat’ev I.E. Production of nickel and iron nanopowders by hydrogen reduction from salts. Russ. Metall. (Metally). 2012. No. 7. P. 654—658.
20. Antsiferov V.N., Mazein S.A. Study of the influence of mechanochemical activation in the titanium-carbon system. Fizika i khimiya obrabotki materialov. 1994. No. 4—5. P. 195—199 (In Russ.).
21. Oglezneva S.A., Portalov M.N. Investigation into the kinetics of isothermal sintering of milled and mechanically alloyed iron powders. Russ. J. Non-Ferr. Met. 2015. Vol. 56. No. 3. P. 300—306. DOI: 10.3103/S1067821215030153.
22. Oglezneva S.A. Rapid method for the determination of the diamond specific consumption under laboratory conditions. Izvestiya vuzov. Tsvetnaya metallurgiya. 2000. No. 5. P. 65—67 (In Russ.).
23. Khansen M., Anderko K. Double alloy structures. Moscow: Metallurgizdat, 1962 (In Russ.).
24. Matrenin S.V., Il’in A.P., Slosman A.I., Tolobanova L.O. Sintering of nano-dispersed iron powder. Perspektivnye materialy. 2008. No. 4. P. 81—87 (In Russ.).
25. Ivensen V.A. Phenomenology of sintering and some theory questions. Moscow: Metallurgiya, 1985 (In Russ.).
Review
For citations:
Oglezneva S.A., Saenkov K.L., Knyazev A.A. Study of the effect of dispersion and homogeneity of the structure on the properties of powder metastable austenitic carbide steels and diamond tools. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2019;(1):52-60. (In Russ.) https://doi.org/10.17073/1997-308X-2019-1-52-60