Physical-chemical processes of obtaining ceramic materials based on nanopowders of oxides of zirconium, yttrium, cerium and aluminum
https://doi.org/10.17073/1997-308X-2019-1-61-71
Abstract
About the Authors
E. N. MakarovaRussian Federation
Cand. Sci. (Tech.), assistant of the Department of мaterials, technologies and machine design.
614990, Perm, Komsomol’skii pr., 29.
I. V. Antsiferova
Russian Federation
Dr. Sci. (Tech.), prof., Department of мaterials, technologies and machine design.
614990, Perm, Komsomol’skii pr., 29.
References
1. Chevalier J., Gremillard L. Ceramics for medical applications: A picture for the next 20 years. J. Eur. Ceram. Soc. 2009. Р. 1245—1255.
2. Shevchenko A.V., Dudnik E.V., Tsukrenko V.V., Ruban A.K. Microstructure design of materials in ZrO 2—Y2O3— CeO2—Al2О3 system. Poroshkovaya metallurgiya. 2010. No. 9/10. P . 43—51 (In Russ.).
3. Shevchenko A.V. Hydrothermal synthesis of nanocrystal powders in the sistem ZrO2—Y2O3—CeO2. Poroshkovaya metallurgiya. 2007. No. 1/2. P. 23—30 (In Russ.).
4. Tsukrenko V.V., Dudnik E.V., Shevchenko A.V., Lopato L.M. Hydrothermal synthesis of nanocrystalline powders in ZrO2—Y2O3—CeO2 system. In: Moder problems of physical materiology. Kiev: ІPM NAN Ukraine, 2008. Iss. 17. P. 46—51 (In Russ.).
5. Shevchenko A.V., Dudnik E.V., Ruban A.K., Red’ko V.P., Lopato L.M. Synthesis and properties of nanocrystalline powder composition 90 % ZrO2—Y2O3—CeO2 and 10 % Al2O3. Neorganicheskie nanomaterialy. 2008. T. 44. No. 4. P. 477—481 (In Russ.).
6. Lashneva V.V., Shevchenko A.V., Dudnik E.V. Bioceramics based on ZrO2. Steklo i keramika. 2009. No. 4. P. 25—28 (In Russ.).
7. Chevalier J. What future for zirconia as a biomaterial. Biomaterials. 2006. Vol. 27(4). Р. 535—543.
8. Palmero P. Structural ceramic nanocomposites; a review of properties and powders’ synthesis methods. Nanomaterials. 2015. No. 5. Р. 656—696.
9. Porozova S.E., Makarova E.N., Kul’met’eva V.B. Effect of small additives of Al2O3 on the properties of ceramics of ZrO2—2Y2O3—4CeO2 system. Izvestiya Samarskogo nauchnogo tsentra RAN. 2015. Vol. 17. No. 2 (4). P. 874— 880 (In Russ.).
10. Antsiferova I.V., Makarova E.N. Effect of ultrasonic treatment and ageing in ethanol medium on grain size distribution and agglomeration level of nanopowders of ZrO2—2Y2O3—4CeO2—Al2O3 system. Perspektivnye materialy. 2015. No. 1. P. 41—48 (In Russ.).
11. Makarova E.N., Antsiferova I.V. Investigation into the solubility of nanopowders of the ZrO2—Y2O3—CeO2— Al2O3 system in the aqueous medium at various pH. Russ. J. Non-Ferr. Met. 2017. Vol. 58. No. 5. P. 525—529.
12. Kul’met’eva V.B., Porozova S.E. Ceramics materials: manufacturing, properties, application. Perm’: Izd-vo PGTU, 2009. Р. 50—54 (In Russ.).
13. Matrenin S.V. Investigation into the properties of oxide ceramics based on ZrO2 and Al2O3. Tomsk: Izd-vo TPU, 2009 (In Russ.).
14. Shevchenko A.V., Ruban A.K., Dudnik E.V. High-performance ceramics based on zirconia dioxide. Ogneupory i tekhnicheskaya keramika. 2000. No. 9. P. 2—8 (In Russ.).
15. Bastide B., Bastid P., Canale P., Odie P. Characterization of a new ternary Ce-tetragonal zirconia. J. Eur. Ceram. Soc. 1989. Vol. 5. P. 289—293.
16. Zhang L., Zheng Y., Guo J., Wu D., Gong M. Structure evolution process of Ce0.65Zr0.25Y0.1O1.95 prepared by oxidation-coprecipitation method. Acta Phys.-Chim. Sinica. 2008. Vol. 24 (8). P. 1342—1346. DOI: 10.1016/S01672738(98)00538-4.
17. Volpato C.A., GarbelottoL.G. D., Fredel M.C., Bondioli F. Application of zirconia in dentistry: biological, mechanical and optical considerations, advances in ceramics. In: Electric and magnetic ceramics, bioceramics, ceramics and environment. 2011. P. 397—420.
18. Lin J.-D., Duh J.-G. Correlation of mechanical properties and composition in tetragonal CeO2—Y2O3—ZrO2 ceramic system. Mater. Chem. Phys. 2002. Vol. 78. P. 246— 252.
19. Shevchenko A.V., Dudnik E.V., Ruban A.K., Red’ko V.P., Lopato L.M. Effect of Al2O3 on the properties of nanocrystalline powder ZrO2 containing 3 mol. % Y2O3. Neorganicheskie nanomaterialy. 2010. Vol. 46. No. 2. P. 212— 216 (In Russ.).
20. Шевченко А.В., Лашнева В.В., Дудник Е.В., Рубан А.К., Подзорова Л.И. Синтез и физико-химические свойства керамики из нанокристаллического порошка диоксида циркония. Наносистеми, наноматеріали, нанотехнології. 2011. Т. 9. No. 4. С. 881—893.
21. Lange F.F. Transformation toughening. Pt. 4. Fabrication, fracture toughness and strength of Al2O3—ZrO2 composites. J. Mater. Sci. 1982. Vol. 17. P. 247—254.
22. Tsubakino H., Nozato R., Hamamoto M. Effect of alumina addition on the tetragonal-to-monoclinic phase transformation in zirconia — 3 mol. % yttria. J. Am. Ceram. Soc. 1991. Vol. 74 (2). P. 440—443.
23. Li J., Watanabe R. Fracture toughness of Al2O3-particledispersed Y2O3 partially stabilized zirconia. J. Am. Ceram. Soc. 1995. Vol. 78 (4). P. 1079—1082.
Review
For citations:
Makarova E.N., Antsiferova I.V. Physical-chemical processes of obtaining ceramic materials based on nanopowders of oxides of zirconium, yttrium, cerium and aluminum. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2019;(1):61-71. (In Russ.) https://doi.org/10.17073/1997-308X-2019-1-61-71