Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Features of the diamond films growth on the tungsten carbide surface by a copper underlayer

https://doi.org/10.17073/1997-308X-2019-1-72-81

Abstract

Surface preparation is a prerequisite for ensuring the required properties of a diamond film obtained by gas-phase deposition. The paper considers the effect of temperature and concentration of the etchant CuSO4 on the structural and phase composition of the surface of hard-alloy materials. The structural and phase composition of a continuous polycrystalline diamond film at its growth stages was also studied. Adhesion of the obtained diamond films to the surface of carbide materials was qualitatively determined. It has been established that surface treatment of a hard alloy in a CuSO4 solution at a temperature t = 23 °C leads to unequal removal of the cobalt bond with chipping of WC grains and the formation of a porous structure in the surface layer of the WC–6%Co alloy. The treatment with an etchant CuSO4 at t = –2 °С ensures uniform etching of the Co-bond along the WC grain boundaries and the formation of a chemically uniform surface. The orientational growth and adhesion of the diamond film depend on the elemental composition of the surface of the WC–Co alloy after treatment with a CuSO4 solution. If the treatment was carried out at a tsolution = 23 °C, then during the synthesis of the diamond film, the removal of copper from the defective surface layer of WC is difficult. This provides the multidirectional growth of diamond crystals in the film in two directions: <111> and <110>, which causes critical biaxial compressive stresses (2,5 GPa) and leads to low adhesion of the film to the surface of the hard alloy. If the treatment was carried out at tsolution = –2 °C, then the orientational growth of diamond crystals in the film occurs in one preferential crystallographic direction <111>. It reduces the biaxial compressive stresses (1,7 GPa) and increases the adhesive adhesion of the film to the surface of the hard alloy . The structure defect, calculated from the ratio of the lines of integrated intensities I1333 / I1580 using the Raman spectroscopy, decreases with concentration growth for negative temperatures and increases for positive ones of CuSO4 solution during surface preparation.

About the Authors

D. S. Vokhmyanin
Perm National Research Polytechnic University (PNRPU).
Russian Federation

Researcher of the Centre of powder material science .

614013, Perm, Professor Pozdeev str., 6. 



S. A. Oglezneva
Perm National Research Polytechnic University (PNRPU).
Russian Federation

 Dr. Sci. (Tech.), prof. of the Department of materials, technology and machine design.

614990, Russia, Perm, Komsomol’skii pr., 29.



References

1. Rifai A., Pirogova E., Fox K. Diamond, carbon nanotubes and graphene for biomedical applications. Encyclop. Biomed. Eng. 2019. P. 97—107. DOI: 10.1016/B978-0-12801238-3.99874-X.

2. Ruffinatto S., Girard H.A., Becher F., Arnault J.-C., Tromson D., Bergonzo P. Diamond porous membranes: A material toward analytical chemistry. Diamond Relat. Mater. 2015. Vol. 55. P. 123—130. DOI: 10.1016/j.diamond. 2015.03.008.

3. Lee J.C., Magyar A.P., Bracher D.O., Aharonovich I., Hua E.L. Fabrication of thin diamond membranes for photonic applications. Diamond Relat. Mater. 2013. Vol. 33. P. 45—48. DOI: 10.1016/j.diamond.2012.12.008.

4. Gray K.J. Effective thermal conductivity of a diamond coated heat spreader. Diamond Relat. Mater. 2000. Vol. 9. Iss. 2. P. 201—204. DOI: 10.1016/S0925-9635(00)00230-2.

5. Polikarpov M., Polikarpov V., Snigireva I., Snigirev A. Diamond X-ray refractive lenses with high acceptance. Phys. Procedia. 2016. Vol. 84. P. 213—220. DOI: 10.1016/j. phpro.2016.11.037.

6. Liu H., Reilly S., Herrnsdorf J., Xie E., Savitski V.G., Kemp A.J., Gu E., Dawson M.D. Large radius of curvature micro-lenses on single crystal diamond for application in monolithic diamond Raman lasers. Diamond Relat. Mater. 2016. Vol. 65. P. 37—41. DOI: 10.1016/j.diamond.2016.01.016.

7. Zehnder T., Patscheider J. Nanocomposite TiC/a—C:H hard coatings deposited by reactive PVD. Surf. Coat. Technol. 2000. Vol. 133—134. P. 138—144. DOI: 10.1016/ S0257-8972(00)00888-4.

8. Hollman P., Alahelisten A., Olsson M., Hogmark S. Residual stress, young’s modulus and fracture stress of hot flame deposited diamond. Thin Solid Films. 1995. Vol. 270. Iss. 1— 2. P. 137—142. DOI: 10.1016/0040-6090(95)06910-0.

9. Kohzaki M., Higuchi K., Noda S. Frictional properties of chemical vapor deposited diamond thin films. Mater. Lett. 1990. Vol. 9. Iss. 2—3. P. 80—82. DOI: 10.1016/ 0167-577X(90)90156-G.

10. Richard L.C., Miyoshi Kazuhisa, Vuppuladhadium Rama, Howard E. Jackson. Physical and tribological properties of rapid thermal annealed diamond-like carbon films. Surf. Coat. Technol. 1992. Vol. 54—55. Iss. 2. P. 576—580. DOI: 10.1016/S0257-8972(07)80085-5.

11. Xing Youqiang, Deng Jianxin, Zhang Guodong, Wu Ze, Wu Fengfang. Assessment in drilling of C/C—SiC composites using brazed diamond drills. J. Manuf. Processes. 2017. Vol. 26. P. 31—43. DOI: 10.1016/j.jmapro.2017.01.006.

12. Layendecker T., Lemmer O., Jurgens A., Esser S., Ebberink J. Industrial application of crystalline diamond-coated tools. Surf. Coat. Technol. 1991. Vol. 48. Iss. 3. P. 253—260. DOI: .1016/0257-8972(91)90013-M.

13. Bull S.J., Matthews A. Diamond for wear and corrosion applications. Diamond Relat. Mater. 1992. Vol. 1. Iss. 10—11. P. 1049—1064. DOI: 10.1016/0925-9635(92)90075-Y.

14. Sergeichev K.F., Dushik V.V., Ivanov V.A., Lapteva V.G., Lakhotin Yu.V., Lukina N.A., Borisenko M.A., Poddubnaya L.Yu. Gas-cycle plasma-chemical synthesis of polycrystalline diamond coating of working face of hardmetal cutting instruments in plasma of torch microwave discharge. Uspekhi prikladnoi fiziki. 2014. Vol. 5. P. 453—475 (In Russ.).

15. Haubner R., Lindbauer A., Lux B. Diamond deposition on chromium, cobalt and nickel substrates by microwave plasma chemical vapour deposition. Diamond Relat. Mater. 1993. Vol. 2. Iss. 12. P. 1505—1515. DOI: 10.1016/ 0925-9635(93)90021-S.

16. Matsubara H., Kihara J. Diamond deposition by means of tantalum filament on WC—Co alloy and other hard materials. In: Science, technology of new diamond. Eds. S. Saito, O. Fukunaga, M. Yoshikawa. 1990. P. 89—93.

17. Mehlmann A.K., Dirnfeld S.F., Avigal Y. Investigation of low-pressure diamond deposition on cemented carbides. Diamond Relat. Mater. 1992. Vol. 1. Iss. 5—6. P. 600—604. DOI: 10.1016/0925-9635(92)90174-M.

18. Haubner R., Kubelka S., Lux B., Griesser M., Grasserbauer M. Murakami and H2SO4/H2O2 pretreatment of WC—Co hard metal substrates to increase the adhesion of CVD diamond coatings. J. Phys. IV Collogue (France). 1995. Vol. 5. P. 753—760. DOI: 10.1051/jphyscol:1995589.

19. Haubner R., Kalss W. Diamond deposition on hardmetal substrates — Comparison of substrate pre-treatments and industrial applications. Int. J. Refract. Met. Hard Mater. 2010. Vol. 28. Iss. 4. P. 475—483. DOI: 10.1016/j.ijrmhm. 2010.03.004.

20. Kobashi Koji. Diamond films. Chemical vapor deposition for oriented and heteroepitaxial growth. 1-st ed. Elsevier Science, 2005.

21. Fan Q.H., Pereira E., Grácio J. Diamond deposition on copper: studies on nucleation, growth, and adhesion behaviours. J. Mater. Sci. 1999. Vol. 34. Iss. 6. P. 1353—1365. DOI: 10.1023/A:1004566502572.

22. Sommer M., Haubner R., Lux B. Diamond deposition on copper treated hardmetal substrates. Diamond Relat. Mater. 2000. Vol. 9. Iss. 3—6. P. 351—357. DOI: 10.1016/ S0925-9635(99)00250-2.

23. Vokhmyanin D.S. Influence of the copper sublayer on the nucleation of diamond crystal on the surface of tungsten carbide. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya. 2016. Vol. 59. No. 8. P. 85—89 (In Russ.).

24. Kim J.G., Jin Yu. Measurement of residual stress in diamond films obtained using chemical vapor deposition. Jap. J. Appl. Phys. 1998. Vol. 37. P. 890—893. DOI: 10.1143/JJAP.37.L890.

25. Qi Hua Fan, Gracio J., Pereira E. Residual stresses in chemical vapour deposited diamond films. Diamond Relat. Mater. 2000. Vol. 9. Iss. 9—10. P. 1739—1743. DOI: 10.1016/S0925-9635(00)00284-3.

26. Rats D., Bimbault L., Badawi K.F. Crystalline quality and residual stresses in diamond layers by Raman and X-ray diffraction analyses. J. Appl. Phys. 1995. Vol. 78. Iss. 8. P. 4994—5001. DOI: 10.1063/1.359725.

27. Wang Xin-chang, Wang Cheng-chuan, He Wei-kai, Sun Fang-hong. Co evolutions for WC—Co with different Co contents during pretreatment and HFCVD diamond film growth processes. Trans. Nonferr. Met. Soc. China. 2018. Vol. 28. Iss. 3. P. 469—486. DOI: 10.1016/S10036326(18)64680-1.

28. Gerasimov Ya.I., Dreving V.P., Eremin E.N., Kiselev A.V., Lebedev V.P., Panchenkov G.M., Shlygin A.I. The rate of physical chemistry. Vol. II. Mosсow: Khimiya, 1973 (In Russ.).

29. Luzanov V.A., Vedeneev A.S. Diamond-like carbon films obtained by the method of high-frequency diode sputtering. J. Commun. Technol. Electron. 2018. Vol. 63. Iss. 9. P. 1068—1069. DOI: 10.1134/S0033849418090139.

30. Vyrovets I.I., Gritsyna V.I., Dudnik S.F., Opalev O.A., Reshetnyak E.N., Strel’nitskii V.E. X-ray analysis of structure and stress state in diamond coating deposited in glow discharge. Voprosy atomnoi nauki i tekhniki. 2008. No. 1. P. 142—146 (In Russ.).

31. Shenderova O.A., Gruen D.M. Ultrananocrystalline diamond: synthesis, properties and applications. William Andrew, 2012. DOI: 10.1007/1-4020-3322-2.

32. Shubnikov A.V. As crystals grow. Moscow, Leningrad: AN SSSR, 1935 (In Russ.).

33. Prawer S., Nemanich R.J. Raman spectroscopy of diamond and doped diamond. Philos. Trans. Royal Soc. A. 2004. Vol. 362. P. 2537—2565. DOI: 10.1098/rsta.2004.1451.

34. Ferrari A.C., Robertson J. Origin of the 1150 cm–1 Raman mode in nanocrystalline diamond. Phys. Rev. B. 2001. Vol. 63. P. 121405-1—121405-4. DOI: 10.1103/PhysRevB.63.121405.

35. Pfeiffer R., Kuzmany H., Salk N., Günther B. Evidence for trans-polyacetylene in nanocrystalline diamond films from H—D isotropic substitution experiments. Appl. Phys. Lett. 2003. Vol. 82. Iss. 23. P. 4149—4150. DOI: 10.1063/1.1582352.

36. Pfeiffer R., Kuzmany H., Knoll P., Bokova S., Salk N., Gunther B. Evidence for trans-polyacetylene in nano-crystalline diamond films. Diamond Relat. Mater. 2003. Vol. 12. Iss. 3—7. P. 268—271. DOI: 10.1016/S09259635(02)00336-9.

37. Ferrari A.C., Rodil S.E., Robertson J. Interpretation of infrared and Raman spectra of amorphous carbon nitrides. Phys. Rev. B. 2003. Vol. 67. P. 155306-1—155306-20. DOI: 10.1103/PhysRevB.67.155306.


Review

For citations:


Vokhmyanin D.S., Oglezneva S.A. Features of the diamond films growth on the tungsten carbide surface by a copper underlayer. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2019;(1):72-81. (In Russ.) https://doi.org/10.17073/1997-308X-2019-1-72-81

Views: 777


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)