Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Structure and properties of corrosion-resistant steel obtained by selective laser melting

https://doi.org/10.17073/1997-308X-2019-1-91-97

Abstract

The objects of study were stainless steel powder 12Kh18N10T of the 20–63 μm fraction and experimental samples obtained on the basis of it by selective laser melting (SLM). The powder was obtained by spraying with argon at a temperature of 1640 °C and a pressure of 27 bar. The particles have the dendritic-cellular structure, with a decrease in their size (<35 μm), the cellular structure prevails, and the dendritic one almost disappears. The distinctive particle size is d50 = 37 μm, d100 = 67 μm. The differential distribution curve is close to the Gaussian form, and asymmetry is associated with satellite and the presence of a small number of particles less than 20 microns in size. The fluidity of the powder was 3,27 g/s, and the bulk density was 4,41 g/cm3. The density of the 12Kh18N10T steel samples grown at the Concept Laser M2 facility with a laser power of 180 W and a speed of 700 mm/s averaged 7,89 g/cm3. Since the density of compact steel is 7,95 g/cm3, the obtained material has enough high density. The microstructure of the 12Kh18N10T sample was described by continuity, the absence of pores and cracks. It was a solid solution of austenite. The average size of coherent scattering regions in the grain volume was 19 nm. The observed arcuate boundaries of parallel semicircular tracks are due to heat removal during crystallization through SLM. The elongated crystallites in the tracks are oriented inward from this boundary. The microhardness of the samples in the transverse plane of the thin section is higher than the microhardness of the planar plane. But the microhardness of the samples obtained from the powder by the SLM is higher than that of the standard compact alloy. Tensile strength and elongation are 651 MPa and 47 %, respectively. The increase in strength is probably due to the grinding of structural parameters in SLM. The fracture surface of the samples is characterized by a pronounced viscous type.

About the Authors

A. A. Smetkin
Perm National Research Polytechnic University (PNRPU).
Russian Federation

Cand. Sci. (Tech.), assistant prof. of the Department of materials, technologies and machine design.

614990, Perm, Komsomolskii pr., 29.



S. A. Oglezneva
Perm National Research Polytechnic University (PNRPU).
Russian Federation

Dr. Sci (Tech.), professor of the Department of materials, technologies and machine design. 

614990, Perm, Komsomolskii pr., 29.



K. V. Kalinin
Perm National Research Polytechnic University (PNRPU).
Russian Federation

Postgraduate student of the Department of materials, technologies and machine design. 

614990, Perm, Komsomolskii pr., 29.



E. F. Khanipov
Perm National Research Polytechnic University (PNRPU).
Russian Federation

P.ostgraduate student of the Department of materials, technologies and machine design. 

614990, Perm, Komsomolskii pr., 29.



References

1. Brandt M. The role of lasers in additive manufacturing. In: Laser additive manufacturing. Woodhead Publ., 2017. Р. 1—18.

2. Gibson YA., Rozen D., Staker B. Additive manufacturing technology. Moscow: Tekhnosfera, 2016 (In Russ.).

3. Frazier W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014. No. 23. P. 1917—1928. DOI: 10.1007/s11665-014-0958-z.

4. Zhang B., Dembinski L., Coddet C. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder. Mater. Sci. Eng. A. 2013. Vol. 584. P. 21—31. DOI: 10.1016/j.msea. 2013.06.055.

5. Yap C.Y., Chua C.K., Dong Z.L., Liu Z.H., Zhang D.Q., Loh L.E., Sin S.L. Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2015. Vol. 2. P. 041101. DOI: 10.1063/1.4935926.

6. Emmelmann C., Kranz J., Herzog D., Wycisk E. Laser additive manufacturing of metals. In: Laser technology in biomimetics. Eds. V. Schmidt, M.R. Belegratis. Heidelberg: Springer, 2013. Р. 143—161.

7. Meiners W., Wissenbach K., Poprawe R. Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int. Mater. Rev. 2012. No. 57 (3). P. 133—164.

8. Kruth J.P., Froyen L., Van Vaerenbergh J., Mercelis P., Rombouts M., Lauwers B. Selective laser melting of iron based powder. J. Mater. Process. Technol. 2004. Vol. 149. P. 616—622. DOI:10.1016/j.jmatprotec.2003.11.051.

9. Zhongji Sun, Xipeng Tan, Shu Beng Tor, Wai Yee Yeong. Selective laser melting of stainless steel 316L with low porosity and high build rates. Mater. Design. 2016. Vol. 104. P. 197—204.

10. Chunlei Qiu, Mohammed Al Kindi, Aiman Salim Aladawi, Issa Al Hatmi. A comprehensive study on microstructure and tensile behaviour of a selectively laser melted stainless steel. Sci. Rep. 2018. Vol. 8. Article 7785. DOI: 10.1038/ s41598-018-26136-7.

11. Herzog D., Seyda V., Wycisk E., Emmelmann C. Additive manufacturing of metals. Acta Mater. 2016. Vol. 117. P. 371—392.

12. Won Y.-M., Thomas B.G. Simple model of microsegregation during solidification of steels. Metall. Mater. Trans. A. 2001. Vol. 32. No. 7. P. 1755—1768.

13. Bracconi P., Gasc G. Surface characterization and reactivity of a nitrogen atomized 304L stainless steel powder. Metall. Mater. Trans. A. 1994. Vol. 25. No. 3. P. 509—520.

14. Kelly T.F., Cohen M., Vander Sande J.B. Rapid solidification of a droplet-processed stainless steel. Metall. Trans. A. 1984. Vol. 15. No. 5. P. 819—833.

15. Barakhtin B.K., Zhukov A.S., Deev A.A. Effect of the chemical composition of powder stock on the strength of material after selective laser fusion. Metallovedenie i termicheskaya obrabotka metallov. 2018. No. 6. P. 48—52 (In Russ.).

16. Barakhtin B.K., Zhukov A.S., Bobyr’ V.V., Shakirov I.V., Kuznetsov P.A. Factors of strength increasing of metals produced by selective laser melting of powders. Voprosy materialovedeniya. 2018. No. 3 (95). P. 68—75 (In Russ.).

17. Zhong Y., Liu L., Wikman S., Cui D., Shen Z. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting. J. Nucl. Mater. 2016. Vol. 470. P. 170—178.

18. Zietala M., Durejko T., Polanski M., Kunce I., Plocinski T., Zielenski W., Lazinska M., Stepniowski W., Czujko T., Kurzydlowski K.J. The microstructure, mechanical pro perties and corrosion resistance of 316L stainless steel fabricated using laser engineered net shaping. Mater. Sci. Eng. A. 2016. Vol. 677. P. 1—10.

19. Gryaznov M.Yu., Shotin S.V., Chuvildeev V.N. Effect of mesostructural strengthening of 316L steel in the selective laser melting process. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2012. No. 5(1). P. 43—50 (In Russ.).

20. Goncharov I.S., Vasil’eva O.V., Kuznetsov P.A., Bobyr’ V.V., Petrov S.N. Structure and properties of corrosionresistant steels of different grades 316L, 410L and 174Ph manufactured by selective laser melting of powders. Novosti materialovedeniya. Nauka i tekhnika. 2015. No. 5. P. 26—32 (In Russ.).

21. Chunlei Qiu, Mohammed Al Kindi, Aiman Salim Aladawi, Issa Al Hatmi. A comprehensive study on microstructure and tensile behaviour of a selectively laser melted stainless steel. Sci. Rep. 2018. No. 8. Article 7785.

22. Sufiyarov V.Sh., Borisov E.V., Polozov I.A., Masailo D.V. Control of structure formation in selective laser melting. Tsvetnye metally. 2018. No. 7. P. 68—74 (In Russ.).

23. Ma M., Wang Z., Zeng X. A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition. Mater. Sci. Eng. A. 2017. Vol. 685. P. 265—273.

24. Gray III G.T., Livescu V., Rigg P.A., Trujillo C.P., Cady C.M., Chen S.R., Carpenter J.S., Lienert T.J., Fensin S.J. Structure/property (constitutive and spallation response) of additively manufactured 316L stainless steel. Acta Mater. 2017. Vol. 138. P. 140—149. DOI: 10.1016/j. actamat.2017.07.045.

25. Brytan Z. Comparison of vacuum sintered and selective laser melted steel AISI 316L. Arch. Metall. Mater. 2017. Vol. 62. No. 4. P. 2125—2131. DOI: 10.1515/amm-20170314.


Review

For citations:


Smetkin A.A., Oglezneva S.A., Kalinin K.V., Khanipov E.F. Structure and properties of corrosion-resistant steel obtained by selective laser melting. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2019;(1):91-97. (In Russ.) https://doi.org/10.17073/1997-308X-2019-1-91-97

Views: 1127


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)