Structure and properties of corrosion-resistant steel obtained by selective laser melting
https://doi.org/10.17073/1997-308X-2019-1-91-97
Abstract
About the Authors
A. A. SmetkinRussian Federation
Cand. Sci. (Tech.), assistant prof. of the Department of materials, technologies and machine design.
614990, Perm, Komsomolskii pr., 29.
S. A. Oglezneva
Russian Federation
Dr. Sci (Tech.), professor of the Department of materials, technologies and machine design.
614990, Perm, Komsomolskii pr., 29.
K. V. Kalinin
Russian Federation
Postgraduate student of the Department of materials, technologies and machine design.
614990, Perm, Komsomolskii pr., 29.
E. F. Khanipov
Russian Federation
P.ostgraduate student of the Department of materials, technologies and machine design.
614990, Perm, Komsomolskii pr., 29.
References
1. Brandt M. The role of lasers in additive manufacturing. In: Laser additive manufacturing. Woodhead Publ., 2017. Р. 1—18.
2. Gibson YA., Rozen D., Staker B. Additive manufacturing technology. Moscow: Tekhnosfera, 2016 (In Russ.).
3. Frazier W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014. No. 23. P. 1917—1928. DOI: 10.1007/s11665-014-0958-z.
4. Zhang B., Dembinski L., Coddet C. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder. Mater. Sci. Eng. A. 2013. Vol. 584. P. 21—31. DOI: 10.1016/j.msea. 2013.06.055.
5. Yap C.Y., Chua C.K., Dong Z.L., Liu Z.H., Zhang D.Q., Loh L.E., Sin S.L. Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2015. Vol. 2. P. 041101. DOI: 10.1063/1.4935926.
6. Emmelmann C., Kranz J., Herzog D., Wycisk E. Laser additive manufacturing of metals. In: Laser technology in biomimetics. Eds. V. Schmidt, M.R. Belegratis. Heidelberg: Springer, 2013. Р. 143—161.
7. Meiners W., Wissenbach K., Poprawe R. Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int. Mater. Rev. 2012. No. 57 (3). P. 133—164.
8. Kruth J.P., Froyen L., Van Vaerenbergh J., Mercelis P., Rombouts M., Lauwers B. Selective laser melting of iron based powder. J. Mater. Process. Technol. 2004. Vol. 149. P. 616—622. DOI:10.1016/j.jmatprotec.2003.11.051.
9. Zhongji Sun, Xipeng Tan, Shu Beng Tor, Wai Yee Yeong. Selective laser melting of stainless steel 316L with low porosity and high build rates. Mater. Design. 2016. Vol. 104. P. 197—204.
10. Chunlei Qiu, Mohammed Al Kindi, Aiman Salim Aladawi, Issa Al Hatmi. A comprehensive study on microstructure and tensile behaviour of a selectively laser melted stainless steel. Sci. Rep. 2018. Vol. 8. Article 7785. DOI: 10.1038/ s41598-018-26136-7.
11. Herzog D., Seyda V., Wycisk E., Emmelmann C. Additive manufacturing of metals. Acta Mater. 2016. Vol. 117. P. 371—392.
12. Won Y.-M., Thomas B.G. Simple model of microsegregation during solidification of steels. Metall. Mater. Trans. A. 2001. Vol. 32. No. 7. P. 1755—1768.
13. Bracconi P., Gasc G. Surface characterization and reactivity of a nitrogen atomized 304L stainless steel powder. Metall. Mater. Trans. A. 1994. Vol. 25. No. 3. P. 509—520.
14. Kelly T.F., Cohen M., Vander Sande J.B. Rapid solidification of a droplet-processed stainless steel. Metall. Trans. A. 1984. Vol. 15. No. 5. P. 819—833.
15. Barakhtin B.K., Zhukov A.S., Deev A.A. Effect of the chemical composition of powder stock on the strength of material after selective laser fusion. Metallovedenie i termicheskaya obrabotka metallov. 2018. No. 6. P. 48—52 (In Russ.).
16. Barakhtin B.K., Zhukov A.S., Bobyr’ V.V., Shakirov I.V., Kuznetsov P.A. Factors of strength increasing of metals produced by selective laser melting of powders. Voprosy materialovedeniya. 2018. No. 3 (95). P. 68—75 (In Russ.).
17. Zhong Y., Liu L., Wikman S., Cui D., Shen Z. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting. J. Nucl. Mater. 2016. Vol. 470. P. 170—178.
18. Zietala M., Durejko T., Polanski M., Kunce I., Plocinski T., Zielenski W., Lazinska M., Stepniowski W., Czujko T., Kurzydlowski K.J. The microstructure, mechanical pro perties and corrosion resistance of 316L stainless steel fabricated using laser engineered net shaping. Mater. Sci. Eng. A. 2016. Vol. 677. P. 1—10.
19. Gryaznov M.Yu., Shotin S.V., Chuvildeev V.N. Effect of mesostructural strengthening of 316L steel in the selective laser melting process. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2012. No. 5(1). P. 43—50 (In Russ.).
20. Goncharov I.S., Vasil’eva O.V., Kuznetsov P.A., Bobyr’ V.V., Petrov S.N. Structure and properties of corrosionresistant steels of different grades 316L, 410L and 174Ph manufactured by selective laser melting of powders. Novosti materialovedeniya. Nauka i tekhnika. 2015. No. 5. P. 26—32 (In Russ.).
21. Chunlei Qiu, Mohammed Al Kindi, Aiman Salim Aladawi, Issa Al Hatmi. A comprehensive study on microstructure and tensile behaviour of a selectively laser melted stainless steel. Sci. Rep. 2018. No. 8. Article 7785.
22. Sufiyarov V.Sh., Borisov E.V., Polozov I.A., Masailo D.V. Control of structure formation in selective laser melting. Tsvetnye metally. 2018. No. 7. P. 68—74 (In Russ.).
23. Ma M., Wang Z., Zeng X. A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition. Mater. Sci. Eng. A. 2017. Vol. 685. P. 265—273.
24. Gray III G.T., Livescu V., Rigg P.A., Trujillo C.P., Cady C.M., Chen S.R., Carpenter J.S., Lienert T.J., Fensin S.J. Structure/property (constitutive and spallation response) of additively manufactured 316L stainless steel. Acta Mater. 2017. Vol. 138. P. 140—149. DOI: 10.1016/j. actamat.2017.07.045.
25. Brytan Z. Comparison of vacuum sintered and selective laser melted steel AISI 316L. Arch. Metall. Mater. 2017. Vol. 62. No. 4. P. 2125—2131. DOI: 10.1515/amm-20170314.
Review
For citations:
Smetkin A.A., Oglezneva S.A., Kalinin K.V., Khanipov E.F. Structure and properties of corrosion-resistant steel obtained by selective laser melting. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2019;(1):91-97. (In Russ.) https://doi.org/10.17073/1997-308X-2019-1-91-97