Preview

Powder Metallurgy аnd Functional Coatings

Advanced search

Structural state of the Ti–Al powder mixture at various stages of mechanoactivation treatment

https://doi.org/10.17073/1997-308X-2019-2-4-14

Abstract

Mechanocomposites used as precursors in high-temperature synthesis increase the possibility of chemical reactions executed in a solid-phase mode: they expand the concentration limits of combustion, change burning temperature and rate, ignition temperature, etc. Issues related to the possibility of changing the mechanocomposite structure at both macro and micro levels canbe important for subsequent obtaining of a synthesis product with a required composition, structure and properties. This paper provides selection of optimal modes for preliminary mechanical activation to obtain precursors for high-temperature synthesis. The main controlling parameters of the activation action on the Ti + Al powder mixture were mechanical activation time and power load intensity. One of the determining factors for choosing the optimal mode of mechanical activation is the formation of maximum possible microstrains without the appearance of mechanical synthesis products at the given grinding parameters. It follows from the analysis of structural parameters that these conditions can be achieved at the mill energy intensity of 20 g within over 13 min of mechanical activation impact, but it is not possible to implement due to powder mixture sticking to grinding media. 7-minute treatment at the intensity of 60 g leads to the beginning of mechanochemical synthesis, which limits the mechanical activation time interval. Thus, it is necessary to select activation modes corresponding to the mechanical activation time of 7 minutes at the ball mill energy intensity of 40 g to ensure subsequent implementation of high-temperature synthesis. The studied morphology of mechanocomposites obtained in this mode demonstrated that a plastic aluminum matrix creates conditions for an ideal contact of reagents, and the material formed can be regarded as an elementary reactor in the volume of which the most favorable conditions for solid-phase diffusion are created.

About the Authors

M. V. Loginova
Polzunov Altai State Technical University (AltSTU)
Russian Federation

Cand. Sci. (Tech.), Senior researcher, Evstigneev problem research laboratory of self-propagating high-temperature synthesis (PRL SHS)

656038, Russia, Barnaul, Lenina ave., 46



A. V. Sobachkin
Polzunov Altai State Technical University (AltSTU)
Russian Federation

Cand. Sci. (Tech.), Senior researcher, PRL SHS

656038, Russia, Barnaul, Lenina ave., 46



S. G. Ivanov
Polzunov Altai State Technical University (AltSTU)
Russian Federation

Cand. Sci. (Tech.), Senior researcher, PRL SHS

656038, Russia, Barnaul, Lenina ave., 46



V. I. Yakovlev
Polzunov Altai State Technical University (AltSTU)
Russian Federation

Cand. Sci. (Tech.), Senior researcher, PRL SHS

656038, Russia, Barnaul, Lenina ave., 46



A. A. Sitnikov
Polzunov Altai State Technical University (AltSTU)
Russian Federation

Dr. Sci. (Tech.), Director of Innovation and technology center

656038, Russia, Barnaul, Lenina ave., 46



V. Yu. Filimonov
Polzunov Altai State Technical University (AltSTU)
Russian Federation

Dr. Sci. (Phys.-Math.), Prof., Department of physics

656038, Russia, Barnaul, Lenina ave., 46



A. Yu. Myasnikov
Polzunov Altai State Technical University (AltSTU)
Russian Federation

Graduate student, PRL SHS

656038, Russia, Barnaul, Lenina ave., 46



A. Z. Negodyaev
Polzunov Altai State Technical University (AltSTU)
Russian Federation

Head of Laboratory, Department of machine-building technologies and equipment

656038, Russia, Barnaul, Lenina ave., 46



References

1. Gras Ch., Gaffet E., Bernard F., Niepce J.C. Enhancement of self-sustaining re-action by mechanical activation: case of an Fe—Si system. Mater. Sci. Eng. A. 1999. Vol. 264. P. 94—107.

2. Uvarov N.F., Boldyrev V.V. Size effects in chemistry of heterogeneous systems. Russ. Chem. Rev. 2001. Vol. 70. No 4. P. 265—284.

3. Kurbatkina V.V., Patsera E.I., Rakhimova A., Logacheva A.I., Levashov E.A. Fabrication of submicron powders and nanostructured NiAl-based granules by the SHS method from a mechanically activated mixture. Izv. vuzov. Tsvet. metallurgiya. 2015. No. 4. P. 69—74 (In Russ.).

4. Aleksandrov V.V., Korchagin M.A. Mechanochemical synthesis in SHS systems. Int. J. Self-Propag. High-Temp. Synth. 1992. Vol. l. No. 3. P. 417—420.

5. Levashov E.A., Kurbatkina B.B., Kolesnichenko K.B. Regularities of the effect of preliminary mechanical activation on the reactivity of SHS mixtures on the basis of titanium. Izv. vuzov. Tsvet. metallurgiya. 2000. No. 6. P. 61—67 (In Russ.).

6. Radev D.D., Klissurski D. Mechanochemical synthesis and SHS of diborides of titanium and zirconium. J. Mater. Synth. Proces. 2001. Vol. 9. No. 3. P. 131—136.

7. Mukasyan A.S., White J.D.E., Kovalev D., Kochetov N., Ponomarev V., Son S.F. Dynamics of phase transformation during thermal explosion in the Al—Ni system: Influence of mechanical activation. Physica B. 2010. Vol. 405. P. 778—784.

8. Loginova M.V., Sobachkin A.V., Sitnikov A.A., Yakovlev V.I., Filimonov V.Yu., Ivanov S.G., Myasnikov A.Yu., Negodyaev A.Z., Gradoboev A.V. Structural state of activated powder mixture Ti + Al with changing time of mechanical activation and doses of gamma-irradiation. Fundamental’nye problemy sovremennogo materialovedeniya. 2018. Vol. 15. No. 1. P. 68—73 (In Russ.).

9. V’yushkov B.V., Levashov E.A., Ermilov A.G., Pityulin A.N., Borovinskaya I.P., Egorychev K.N. Characteristics of the effect of preliminary mechanical activation of a batch on parameters of the self-propagating high-temperature synthesis process, structure, and properties of multicomponent cermet SHTM-5. Combust. Explos. Shock Waves. 1994. Vol. 30. No. 5. P. 630—634.

10. Itin V.I., Monasevich T.V., Bratchikov A.D. Effect of mechanical activation on the regularities of self-propagating high-temperature synthesis in the titanium-nickel system. Combust. Explos. Shock Waves. 1997. Vol. 33. No. 5. P. 553—555.

11. Grigor’eva T.F., Korchagin M.A., Barinova A.P., Lyakhov N.Z. Impact of mechanochemical activation on concentration limits of self-propagating high-temperature synthesis. Doklady AN. 1999. Vol. 369. No. 3. P. 345—347 (In Russ.).

12. Shteinberg A.S., Lin Y.C., Son S.F., Mukasyan A.S. Kinetics of high temperature reaction in Ni—Al system: Influence of mechanical activation. J. Phys. Chem. A. 2010. Vol. 114. P. 6111—6116.

13. Bokhonov B.B., Korchagin M.A. Application of mechanical alloying and self-propagating synthesis for preparation of stable decagonal quasicrystals. J. Alloys Compd. 2004. Vol. 368. P. 152—156.

14. Filimonov V.Yu., Korchagin M.A., Smirnov E.V., Lyakhov N.Z. Macrokinetics of solid-phase synthesis of an activated 3Ni + Al mixture in the thermal explosion mode. Combustion, Explosion, and Shock Waves. 2010. Vol. 46. No. 4. P. 449—456.

15. Terehova O.G., Shkoda O.A., Maksimov Yu.M., Chalun L.D. Loginova M.V., Sobachkin A.V., Ivanov S.G., Yakovlev V.I., Sitnikov A.A., Filimonov V.Yu., Myasnikov A.Yu., Negodyaev A.Z. Effect of mechanical activation of silicon and niobium on SHS synthesis of niobium silicides. Int. J. Self-Propag. High-Temp. Synth. 1999. Vol. 8. No. 3. P. 299—306.

16. Loginova M.V., Filimonov V.Yu., Yakovlev V.I., Sytnikov A.A., Negodyaev A.Z., Shreifer D.V. Analysis of the influence of high temperature synthesis parameters on the structure formation in the mechanically activated 3Ti + Al powder mixture. Appl. Mech. Mater. 2015. Vol. 788. P. 117—122.

17. Lyakhov N. Z., Talako T.L., Grigor’eva T.F. The influence of mechanoactivation on the processes of phase and structure formation in self-propagating high-temperature synthesis. Novosibirsk: Parallel’, 2008 (In Russ.).

18. Turrillas C.C.X., Vaughan G.B.M., Terry A.E., Kvick A., Rodriguez M.A. Al—Ni intermetallics obtained by SHS: A time-resolved X-ray diffraction study. Intermetallics. 2007. Vol. 15. P. 1163—1171.

19. Lomovskii O.I. (Ed.). Mechanocomposites-precursors for creating materials with new properties. Novosibirsk: SO RAN, 2010 (In Russ.).

20. Il’in A.A., Kolachev B.A., Pol’kin I.S. Titanium alloys. Composition, structure, properties. Mosсow: VILS-MATI, 2009 (In Russ.).

21. Ivanov V.I., Yasinskii K.K. Efficiency of application of high-temperature alloys based on Ti3Al and TiAl intermetallides for operation at temperatures of 600—800 °C in aerospace engineering. Tekhnologiya legkikh splavov. 1996. No 3. P. 7—12 (In Russ.).

22. Chuprina V.G., Shalya I.M. Properties of some alloys of Ti—Al system. In: Abstracts Book of X Int. Conf. «ICHMS’07» (Crimea, Ukraine). 2007. P. 38—39.

23. Antashev V.G., Nochovnaya N.A., Pavlova T.V., Podyukova N.M., Ivanov V.I. Heat-resistant titanium alloys. In: Aviatsionnye materially: Izbrannye trudy «VIAM» 1932— 2002: Yubileinyi nauchno-tekhnicheskii sbornik. 2002. P. 111—115 (In Russ.).

24. Filimonov V.Yu., Sitnikov A.A., Afanas’ev A.V., Loginova M.V., Yakovlev V.I., Negodyaev A.Z., Schreifer D.V., Solov’ev V.A. Microwave assisted combustion synthesis in mechanically activated 3Ti + Al powder mixtures: structure formation issues. Int. J. Self-Propag. High-Temp. Synth. 2014. Vol. 23. No. 1. P. 18—25.

25. Filimonov V.Yu., Sytnikov A.A., Yakovlev V.I., Loginova M.V., Afanasyev A.V., Negodyaev A.Z. The features of structure formation in mechanically activated powder mixture 3Ti + Al in the thermal explosion mode. Appl. Mech. Mater. 2014. Vol. 621. P. 71—76.

26. Dymchenko N.P., Shishlyannikova L.M., Yaroslavtseva N.N. The use of computers in calculating the fine crystal structure of polycrystals by the method of second and fourth moments. Apparatura i metody rentgenovskogo analiza. 1974. No. 15. P. 37—45 (In Russ.).

27. Kheiker D.M., Zevin L.S. X-ray Diffractometry. Moscow: Fizmatgiz, 1963 (In Russ.).

28. Kazakov A.A., Kiselev D. Industrial application of thixomet image analyzer for quanti-tative description of steel and alloy’s microstructure. Metallography, Microstructure, and Analysis. 2016. No. 5. P. 294—301.

29. Kazakov A.A., Ryaboshuk S., Lyubochko D., Chigintsev L. Research on the origin of nonmetallic inclusions in highstrength low-alloy steel using automated feature analysis. Microscopy and Microanalysis. 2015. Vol. 21. No. 3. P. 1755—1756.


Review

For citations:


Loginova M.V., Sobachkin A.V., Ivanov S.G., Yakovlev V.I., Sitnikov A.A., Filimonov V.Yu., Myasnikov A.Yu., Negodyaev A.Z. Structural state of the Ti–Al powder mixture at various stages of mechanoactivation treatment. Powder Metallurgy аnd Functional Coatings. 2019;(2):4-14. (In Russ.) https://doi.org/10.17073/1997-308X-2019-2-4-14

Views: 1096


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)