Ellipsometric study of optical properties and oxidation processes of compacted powders based on aluminum alloys
https://doi.org/10.17073/1997-308X-2019-2-23-32
Abstract
The paper presents the results of an ellipsometric study of compacted powders of aluminum-based binary alloys containing 1,5 wt.% of rare earth elements (Sc, La, Ce, Sm) and cast aluminum-silicon alloys with the following compositions: Al–10Si–0,5Mg– 0,3Fe–0,1Ca and Al–12Si–0,6Mg–0,5Fe–0,5Ca–0,45Na. An immersion method was used to determine the optical constants of massive polycrystalline alloys obtained by remelting these powders in vacuum, as well as their oxide films for a wavelength λ = 0,6328 μm. Using the optical constants of these alloys, the dependence of their reflectivity on the surface oxide film thickness was calculated. It was found that an increase in the amount of the alloying component and intermetallic phases in the alloy decreases its reflectivity. In addition, the optical constants were used in the construction of modified Δ–ψ nomograms calculated using the Maxwell-Garnett equation that make it possible to determine the thicknesses of oxide films on particles and the volume fractions of metal in compacted powders, and to study the processes of their oxidation in air. It was shown that oxidation of aluminum ASD-4 powders and Al–1,5% REM binary alloys at 600 °C is described by a simple model where a decrease in the metal fraction leads to an increase in the oxide film thickness. It turned out that the oxidation of aluminum-silicon alloys is much faster and not described by this model, which may be due to the appearance of a liquid phase in the powder. A large number of metal droplets on the surface of particles increase the amount of metal on the studied tablet surface in general. The high oxidation rate of aluminumsilicon alloys in air can be explained by the surface activity of magnesium in relation to liquid aluminum.
About the Authors
L. A. AkashevRussian Federation
Cand. Sci. (Phys.-Math.), Leading researcher, Laboratory of physicochemistry of dispersed systems
620990, Ekaterinburg, Pervomayskaya str., 91
N. A. Popov
Russian Federation
Cand. Sci. (Chem.), Researcher, Laboratory of physicochemistry of dispersed systems
620990, Ekaterinburg, Pervomayskaya str., 91
V. G. Shevchenko
Russian Federation
Dr. Sci. (Chem.), Head of the Laboratory of physicochemistry of dispersed systems
620990, Ekaterinburg, Pervomayskaya str., 91
A. I. Ananyev
Russian Federation
Cand. Sci. (Tech.), Chief metallurgist
141402, Moscow reg., Khimki, Leningradskaya str., 24
References
1. Shishkovskiy I.V. Laser synthesis of functional-gradient mesostructures and volume products. Moscow: Fizmatlit, 2009 (In Russ.).
2. Tolochko N.K., Laoui T., Khlopkov Yu.V., Mozzharov S.E., Titov V., Ignatiev M.B. Absorptance of powder materials suitable for laser sintering. Rapid Prototyping J. 2000. Vol. 6. No. 3. P. 155—160.
3. Libenson M.N. Laser-induced optical and thermal processes in condensed media and their mutual influence. SPb.: Nauka, 2007 (In Russ.).
4. Krivilev M.D., Haranzhevskij E.V., Gordeev G.A., Ankudinov V.E. Controlling laser sintering of metallic powder mixtures. Upravlenie bolshimi sistemami. 2010. Iss. 31. P. 299—322 (In Russ.).
5. Randrianalisoa J., Coquard R., Baillis D. Radiative transfer in two-phase dispersed materials. In: Heat Transfer in Multi-Phase Materials. Advanced Structured Materials. Vol. 2. Berlin: Springer Heidelberg, 2010. P. 187— 234.
6. Ivanov R.A., Seleznyov V.D. Modeling and investigation of laser melting in the 3D printing method using the example of aluminum powder. In: Fizika. Tekhnologii. Innovatsii. Ekaterinburg: Ural'skii federal'nyi universitet, 2015. P. 89—95 (In Russ.).
7. Baillis D., Sacadura J.F. Thermal radiation properties of dispersed media: theoretical prediction and experimental characterization. J. Quant. Spectros. Radiat. Transfer. 2000. Vol. 67. P. 327—363.
8. Gusarov A.V., Kruth J.P. Modelling of radiation transfer in metallic powders at laser treatment. Int. J. Heat Mass Transfer. 2005. Vol. 48. P. 3423—3434.
9. Tancrez M., Taine J. Direct identification of absorption and scattering coefficients and phase function of a porous medium by a Monte Carlo technique. Int. J. Heat Mass Transfer. 2004. Vol. 47. P. 373—383.
10. Boley C.D., Khairallah S.A., Rubenchik A.M. Calculation of laser absorption by metal powders in additive manufacturing. Appl. Optics. 2015. Vol. 54. P. 2477—2482.
11. Laoui T., Wang X., Childs T.H.C., Kruth J.P. Froyen L. Modeling of laser penetration in a powder bed during selective laser sintering of metal powders: Simulations versus experiments. In: Proc. SFF Symp. Austin, 2000. P. 453—460.
12. Fischer P., Karapatis N., Romano V., Glardon R., Weber H.P. A model for the interaction of near-infrared laser pulses with metal powders in selective laser sintering. Appl. Phys. A. 2002. Vol. 74. P. 467—474.
13. Ivanova A.M., Kotova S.P., Kupriyanov N.L., Petrov A.L., Tarasova E.Yu., Shishkovsky I.V. Physical features of selective laser sintering of powder metal-polymer compositions. Kvantovaya ehlektronika. 1998. Vol. 25. No. 5. P. 433—438 (In Russ.).
14. Olakanmi E.O. Selective laser sintering/melting (SLS/ SLM) of pure Al, Al—Mg, and Al—Si powders: Effect of processing conditions and powder properties. J. Mater. Process. Technol. 2013. Vol. 213. P. 1387— 1405.
15. Gopienko V.G. Metal powders of aluminum, magnesium, titanium and silicon. Consumer properties and applications. SPb.: Politekhnicheskiy univ., 2012 (In Russ.).
16. Azzam R.M.A., Bashsara N.M. Ellipsometry and polarized light. Amsterdam: North-Holland Publi. Comp., 1977.
17. Egorova G.A. Potapov E.V. Rakov A.V. Ellipsometry of thin transparent films on aluminum. Optika i spektroskopiya. 1976. Vol. 41. No. 4. P. 643—647 (In Russ.).
18. Kempen K., Thijs L., Van Humbeeck J., Kruth J.P. Mechanical properties of AlSi10Mg produced by selective laser melting. Phys. Proc. 2012. Vol. 39. P. 439—446.
19. Aboulkhair N.T., Tuck C., Ashcroft I., Maskery I., Everitt N.M. On the precipitation hardening of selective laser melted AlSi10Mg. Metal. Mater. Trans. A. 2015. Vol. 46. No. 8. P. 3337—3341.
20. Lyakishev N.P. Phase diagrams of double metal systems: Catalogue in 3 volumes. Vol. 1. Moscow: Mashinostroenie, 1996 (In Russ.).
21. Akashev L.A., Popov N.A., Kochedykov V.A., Shevchenko V.G. Ellipsometric study of the surface oxidation of aluminumheavy REM alloys. Russ. metallurgy (Metally). 2011. No. 2. P. 744—747.
22. Popov N.A., Akashev L.A., Kochedykov V.A., Shevchenko V.G. Thermal oxidation of the intermetallic Al3Y surface. Russ. metallurgy (Metally). 2013. No.8. P. 553—556.
23. Akashev L.A., Popov N.A., Kuznetsov M.V., Shevchenko V.G. Thermal oxidation of the surface of binary aluminum alloys with rare-earth metals. Russ. J. Phys. Chem. A. 2015. Vol. 89. No. 5. P. 852—856.
24. Akashev L.A., Shevchenko V.G., Kochedykov V.A., Popov N.A. Method for determining the thickness of a thin transparent film: Pat. 2463554 (RF). 2011 (In Russ.).
25. Afanas’ev V.K. Piston silumins: Tutorial. Kemerovo: Poligraf, 2005 (In Russ.).
26. Garcia-Cordovilla C., Louis E., Pamies A. The surface tension of liquid pure aluminium and aluminium-magnesium alloy. J. Mater. Sci. 1986. Vol. 21. P. 2787—2792.
27. Kononenko V.I., Shevchenko V.G. Physicochemistry of activation of disperse systems based on aluminum. Ekaterinburg: UrO RAN, 2006 (In Russ.). Akashev L.A., Popov N.A., Shevchenko V.G., Ananyev A.I.
Review
For citations:
Akashev L.A., Popov N.A., Shevchenko V.G., Ananyev A.I. Ellipsometric study of optical properties and oxidation processes of compacted powders based on aluminum alloys. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2019;(2):23-32. (In Russ.) https://doi.org/10.17073/1997-308X-2019-2-23-32