Preview

Powder Metallurgy аnd Functional Coatings

Advanced search

Рroduction of 70%Cu–30%Fe alloy by SHS metallurgy and electrometallurgy. Comparative analysis of microstructures

https://doi.org/10.17073/1997-308X-2019-2-33-41

Abstract

The influence of different methods used to produce Fe–Cu alloys from immiscible components was studied. Alloys with limited solubility (LS) or pseudoalloys (PA) in a liquid or solid state have long been impossible to obtain with traditional metallurgy methods. This is why developing low-cost and simple technologies to produce such alloys and materials based on them with a possibility to set the required level of physical and mechanical properties is still a relevant problem. This study uses energy-efficient SHS metallurgy method to produce a pseudoalloy with a composition, wt.%: 70Cu–30Fe from oxide materials for the first time. This technology offers using chemical energy generated in the reaction of highly exothermic thermit compositions (in a combustion mode) making it a very energy-efficient method for cast material production. Short synthesis time (tens of seconds), and top surface of ingots protected from oxidation with an oxide melt (Al2O3) enables synthesis in atmospheric conditions. Rods with the same composition were obtained using single-stage vacuum induction remelting from pure (impurity-free) Fe and Cu components for comparative structural studies of alloy sample components. It was found that high melting temperatures of the SHS alloy provides higher solubility of Cu in Fe. Then, when crystallized, structural components are released in the form of small dispersed particles throughout the volume and form a hierarchical structure typical for the SHS alloy only. 70Cu–30Fe alloys produced in a combustion mode (SHS) have a homogeneous structure with structural components distributed uniformly throughout the sample volume, which can be of great practical interest, in particular, for making isotropic and anisotropic hard-magnetic materials with high magnetic energy.

About the Authors

V. V. Sanin
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Engineer, Scientific-educational center «Nanomaterials and nanotechnologies»

119049, Moscow, Leninsky pr., 4



M. R. Filonov
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Dr. Sci. (Tech.), Prof., Vice-rector of Science and Innovation

119049, Moscow, Leninsky pr., 4



V. I. Yukhvid
Institute of Structural Macrokinetics and Materials, Russian Academy of Sciences (ISMAN)
Russian Federation

Dr. Sci. (Tech.), Prof., Head of the Laboratory of SHS melts and cast materials

142432, Moscow reg., Chernogolovka, Academician Osipyan str., 8



Yu. A. Anikin
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Tech.), Leading research scientist, Department of functional nanosystems and high-temperature materials

119049, Moscow, Leninsky pr., 4



D. M. Ikornikov
Institute of Structural Macrokinetics and Materials, Russian Academy of Sciences (ISMAN)
Russian Federation

Junior research scientist, Laboratory of SHS melts and cast materials

142432, Moscow reg., Chernogolovka, Academician Osipyan str., 8



References

1. Livshits B.G., Linetskii Ya.L., Kraposhin V.S. Physical properties of metals and alloys. Moscow: Metallurgiya, 1980 (In Russ.).

2. Avraamov Yu.S., Shlyapin A.D. Alloys based on systems with limited solubility in the liquid state. Moscow: Intercontact Nauka, 1980 (In Russ.).

3. Bachmaier A., Schmauch J., Aboulfadl H., Verch A., Motz C. On the process of co-deformation and phase dissolution in a hard-soft immiscible Cu single bond Co alloy system during high-pressure torsion deformation. Acta Mater. 2016. Vol. 115. P. 333—346.

4. Zhou Sh., Lei J., Xiong Z, Guo J. Gu. Z., Pan H. Effect of Fe content on microstructure and mechanical properties of Cu—Fe-based composite coatings by laser induction hybrid rapid cladding. Trans. Nonferr. Met. Soc. China. 2016. Vol. 26. No. 12. P. 3196—3204. DOI: https://doi.org/10.1016/S1003-6326(16)64452-7

5. Dublon G., Habbal F., Bell J.L. Permanent magnet properties of in situ formed multifilamentary composites. J. Appl. Phys. 1982. Vol. 53. No. 11 P. 8333—8337.

6. Shi G., Chen H., Jiang H., Wang Z., Tang H., Fan Y. Strengthening mechanisms of Fe nanoparticles for single crystal Cu—Fe alloy. Mater. Sci. Eng. A. 2015. Vol. 636. P. 43— 47. DOI: https://doi.org/10.1016/j.msea.2015.03.081.

7. Prokoshkina D., Esin V., Divinski S. Experimental evidence for anomalous grain boundary diffusion of Fe in Cu and Cu—Fe alloys. Acta Mater. 2017. Vol. 133. P. 240—246. DOI: https://doi.org/10.1016/j.actamat.2017.05.024.

8. Mina R., Hamed M., Abolghasem A. Processing of Cu— Fe and Cu—Fe—SiC nanocomposites by mechanical alloying. Adv. Powder Technol. 2017. Vol. 28. No. 8. P. 1882—1887. DOI: https://doi.org/10.1016/j.apt.2017.04.023

9. Dong Q., Wanga M., Shen L., Jia Y., Li Z. Diffraction analysis of α-Fe precipitates in a polycrystalline Cu— Fe alloy. Mater. Charact. 2015. Vol. 105. P. 129—135. DOI: https://doi.org/10.1016/j.matchar.2015.05.012.

10. Fenglin W., Wakoh K., Li Y. Ito Sh., Yamanaka K., Koizumi Y., Chiba A. Study of microstructure evolution and properties of Cu—Fe microcomposites produced by a prealloyed powder method. Mater. Design. 2017. Vol. 126. P. 64—72. DOI: https://doi.org/10.1016/j.matdes.2017.04.017

11. Cutrano C.S., Lekka Ch.E. Structural, magnetic and electronic properties of Cu-Fe nanoclusters by density functional theory calculations. J. Alloys and Compd. 2017. Vol. 707. P. 114—119. DOI: https://doi.org/10.1016/j.jallcom.2016.11.425

12. Yufei W., Haiyan G., Yanfeng H., Yongbing D., Jun W, Baode S. First-principles study on the solubility of iron in dilute Cu—Fe—X alloys. J. Alloys and Compd. 2017. Vol. 691. P. 992—996. http://dx.doi.org/10.1016/j. jallcom.2016.08.247.

13. Elofsson V., Almyras G.A., Lü B., Boy R.D., Sarakinos K. Atomic arrangement in immiscible Ag—Cu alloys synthesized far-from-equilibrium. Acta Mater. 2016. Vol. 110. P. 114—121. DOI: http://dx.doi.org/10.1016/j.actamat.2016.03.023

14. Yanhui L., Xingjie J., Yongqiang X., Chuntao C., Guoqiang X., Wei. Z. Soft magnetic Fe—Si—B—Cu nanocrystalline alloys with high Cu concentrations. J. Alloys and Compd. 2017. Vol. 722. P. 859—863. DOI: https://doi.org/10.1016/j.jallcom.2017.06.128

15. Ghannami M.E., Gómez-Polo C., Rivero G. Hernando A. Exchange correlation length and magnetoresistance in Fe—Cu and Fe—Cu—Ni melt-spun ribbons. Eur. Lett. 1994. Vol. 26. No. 9. P. 701—706.

16. Zhiliang P., Timothy J., Rupert D. Formation of ordered and disordered interfacial films in immiscible metal alloys. Scripta Mater. 2017. Vol. 130. P. 91—95. DOI: http://dx.doi.org/10.1016/j.scriptamat.2016.11.025.

17. Jo H.R., Kim J.T., Hong S.H., Kim Yo.S., Park H.J., Park W.J., Park J.M., Kim K.B. Effect of silicon on microstructure and mechanical properties of Cu-Fe alloys. J. Alloys and Compd. 2017. Vol. 707. P. 184—188. DOI: https://doi.org/10.1016/j.jallcom.2016.12.352

18. Chen Y., Li N., Bufford D.C., Li J., Hattar K., Wang H., Zhang X. In situ study of heavy ion irradiation response of immiscible Cu/Fe multilayers. J. Nucl. Mater. 2016. Vol. 475. P. 274—279.

19. Yang Ya., Wang D., Lin J., Khan D. F., Lin G., Jidong Ma. Evolution of structure and fabrication of Cu/Fe multilayered composites by a repeated diffusion-rolling procedure. Mater. Design. 2015. Vol. 85. P. 635—639. DOI: https://doi.org/10.1016/j.matdes.2015.07.082.

20. Merzhanov A.G. Combustion processes and synthesis of materials. Chernogolovka: ISMAN, 1998 (In Russ.).

21. Sanin V.N., Ikornikov D.M., Andreev D.E., Yukhvid V.I. Centrifugal SHS-metallurgy of eutectic alloys based on nickel aluminum. Izv. vuzov. Рoroshk. metallurgiya i funkts. pokrytiya. 2013. No. 3. P. 35—42.

22. Sanin V.N., Yukhvid V.I., Merzhanov A.G. The influence of high-temperature melt infiltration under centrifugal forces on SHS processes in gasless systems. Int. J. SelfPropag. High-Temp. Synth. 2002. Vol. 11. No.1. P. 31—44.

23. Shiryaev A.A. Thermodynamics of SHS processes: An advanced approach. Int. J. Self-Propag. High-Temp. Synth. 1995. Vol. 2. No. 4. P. 351—362.


Review

For citations:


Sanin V.V., Filonov M.R., Yukhvid V.I., Anikin Yu.A., Ikornikov D.M. Рroduction of 70%Cu–30%Fe alloy by SHS metallurgy and electrometallurgy. Comparative analysis of microstructures. Powder Metallurgy аnd Functional Coatings. 2019;(2):33-41. (In Russ.) https://doi.org/10.17073/1997-308X-2019-2-33-41

Views: 1203


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)