Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Nb2AlC MAX phase synthesis by SHS metallurgy

https://doi.org/10.17073/1997-308X-2019-2-42-48

Abstract

A cast material based on the Nb2AlC MAX phase was obtained by SHS metallurgy. Synthesis was carried out from the Nb2O5– Al–C mixture with a high-energy CaO2–Al additive. Thermodynamic calculation results correlate well with experimental data. It was found that the CaO2–Al additive content has a substantial effect on the thermodynamic parameters and phase composition of the final product. It was shown that synthesis from the specified mixtures passed in a stationary mode with steady combustion wave. Increasing the additive content leads to increasing combustion rate (from 6 to 12 mm/s), and product yield to ingot increases (from 30 to 47 %) up to 15 wt.% of the additive and then decreases. Variation in the composition of initial mixtures can provide a significant impact on both synthesis parameters and final product phase composition. Optimal conditions of material synthesis to ensure maximum yield of the Nb2AlC MAX phase in the ingot composition were determined. The liquid phase lifetime during synthesis is a determining factor influencing the Nb2AlC content in the final product. It is shown that the maximum Nb2AlC phase amount (67 wt.%) is reached with 15 wt.% of the high-energy additive in the initial charge.

About the Authors

I. D. Kovalev
Institute of Structural Macrokinetics and Materials, Russian Academy of Sciences (ISMAN)
Russian Federation

Cand. Sci. (Phys.-Math.), Researcher, Laboratory of X-Ray diffraction studies

142432, Moscow reg., Chernogolovka, Acad. Osipyan str., 8



P. A. Miloserdov
Institute of Structural Macrokinetics and Materials, Russian Academy of Sciences (ISMAN)
Russian Federation

Cand. Sci. (Tech.), Researcher, Laboratory of SHS melts and cast materials

142432, Moscow reg., Chernogolovka, Acad. Osipyan str., 8



V. A. Gorshkov
Institute of Structural Macrokinetics and Materials, Russian Academy of Sciences (ISMAN)
Russian Federation

Dr. Sci. (Phys.-Math.), Leading researcher, Laboratory of SHS melts and cast materials

142432, Moscow reg., Chernogolovka, Acad. Osipyan str., 8



D. Yu. Kovalev
Institute of Structural Macrokinetics and Materials, Russian Academy of Sciences (ISMAN)
Russian Federation

Cand. Sci. (Tech.), Head of Laboratory of X-Ray diffraction studies

142432, Moscow reg., Chernogolovka, Acad. Osipyan str., 8



References

1. Barsoum M.W. MAX phases. Properties of machinable ternary carbides and nitrides. Weinheim: Wiley VCH, 2013.

2. Barsoum M.W., El-Raghy T. The MAX phases: Unique new carbide and nitride materials. Amer. Sci. 2001. Vol. 89. P. 336—345.

3. Barsoum M.W., Radovic M. Elastic and mechanical properties of the MAX phases. Annu. Rev. Mater. Res. 2011. Vol. 41. P.195—227.

4. Radovic M., Barsoum M.W. MAX phases: Bridging the gap between metals and ceramics. Amer. Ceram. Soc. Bull. 2014. Vol. 92. No. 3. P. 20—27.

5. Poon B., Ponson L., Zhao J., Ravichandran G. Damage accumulation and hysteretic behavior of MAX phase materials. J. Mech. Phys. Solid. 2011. Vol. 59. P. 2238—2257.

6. Rahman M.A., Rahaman M.Z. Study on structural, electronic, optical and mechanical properties of MAX phase compounds and applications: Review article. Amer. J. Modern Phys. 2015. Vol. 4. No. 2. P. 75—91.

7. Schuster J.C., Nowotny H. Investigations of the ternary systems (Zr, Hf, Nb, Ta)—Al—C and studies on complex carbides. Z. Metallkd. 1980. Bd. 71. S. 341—346.

8. Salama I., El-Raghy T., Barsoum M.W. Synthesis and mechanical properties of Nb2AlC and (Ti,Nb)2AlC. J. Alloys and Compd. 2002. Vol. 347. No. 1. P. 271—278.

9. Zhang W., Travitzky N., Hu C.F., Zhou Y.C., Greil P. Reactive hot pressing and properties of Nb2AlC. J. Amer. Ceram. Soc. 2009. Vol. 92. P. 2396—2399.

10. Scabarozi T.H., Roche J., Rosenfeld A., Lim S.H., SalamancaRiba L., Yong G., Takeuchi I., Barsoum M.W., Hettinger J.D., Lofland S.E. Synthesis and characterization of Nb2AlC thin films. Thin Solid Films. 2009. Vol. 517. P. 2920—2923.

11. Merzhanov A.G. SHS on the pathway to industrialization. Chernogolovka: ISMAN, 2001.

12. Merzhanov A.G. The chemistry of self-propagating hightemperature synthesis. J. Mater. Chem. 2004. Vol. 12. P. 1779—1786.

13. Levashov E.A., Mukasyan A.S., Rogachev A.S., Shtansky D.V. Self-propagating high-temperature synthesis of advanced materials and coatings. Int. Mater. Rev. 2017. Vol. 62. No. 4. P. 203—239.

14. Łopacinski M., Puszynski J., Lis J. Synthesis of ternary titanium aluminum carbides using self-propagating high-temperature synthesis technique. J. Amer. Ceram. Soc. 2001. Vol. 84. No. 12. P. 3051—3053.

15. Zhu C., Zhu J., Wu H., Lin H. Synthesis of Ti3AlC2 by SHS and thermodynamic calculation based on first principles. Rare Metals. 2015. Vol. 34. No. 2. P. 107—110.

16. Konovalikhin S.V., Kovalev D.Yu., Sytschev A.E., Vadchenko S.G., Shchukin A.S. Formation of nanolaminate structures in the Ti—Si—C system: A crystallochemical study. Int. J. of SHS. 2014. Vol. 23. No. 4. P. 217—221.

17. Yeh C.L., Kuo C.W. An investigation on formation of Nb2AlC by combustion synthesis of Nb2O5—Al—Al4C3 powder compacts. J. Alloys and Compd. 2010. Vol. 496. P. 566—571.

18. Radischevsky V.L., Lepakova O.K., Afanasiev N.I. Synthesis, structure and properties of Ti3SiC2 and Nb2AlC MAX-phases. Vestnik Tomskogo Gosudarstvennogo universiteta. Khimija. 2015. No. 1. С. 33—38 (In Russ.).

19. Gorshkov V.A., Miloserdov P.A., Luginina M.A., Sachkova N.V., Belikova A.F. High-temperature synthesis of a cast material with a maximum content of the MAX phase Cr2AlC. Inorg. Mater. 2017. Vol. 53. No. 3. P. 271— 277.

20. Gorshkov V.A., Miloserdov P.A., Kovalev I.D. Cast ceramics by metallothermic SHS under elevated argon pressure. Int. J. of SHS. 2017. Vol. 26. No. 1. P. 60—64.

21. Shiryaev A. Thermodynamics of SHS processes: An advanced approach. Int. J. of SHS. 1995. Vol. 4. No. 4. P. 351— 362.

22. Jeitschko W., Nowotny H., Benesovsky F. Kohlenstoff-haltige ternare Phasen (Nb3Al2C und Ta3Al2C). Monatsh. Chem. 1963. Vol. 94. P. 332—333.

23. Jeitschko W., Nowotny H., Benesovsky F. Phasen mit Aufgefiillter β-Manganstruktur. Monatsh. Chem. 1963. Bd. 94. S. 672—676.

24. Gusev A.I. Phase equilibria in M—X—X’ and M—Al—X ternary systems (M = transition metal; X, X’ — B, C, N, Si) and the crystal chemistry of ternary compounds. Russ. Chem. Rev. 1996. Vol. 65. No. 5. P. 379—419.

25. Hu C., Li F., He L., Liu M., Zhang J., Wang J., Bao Y., Wang J., Zhou Y. In situ reaction synthesis, electrical and thermal, and mechanical properties of Nb4AlC3. J. Amer. Ceram. Soc. 2008. Vol. 91. No. 7. P. 2258—2263.


Review

For citations:


Kovalev I.D., Miloserdov P.A., Gorshkov V.A., Kovalev D.Yu. Nb2AlC MAX phase synthesis by SHS metallurgy. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2019;(2):42-48. (In Russ.) https://doi.org/10.17073/1997-308X-2019-2-42-48

Views: 1430


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)