Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Deposition of amorphous hardening coatings by electrospark treatment in a crystalline granule mixture

https://doi.org/10.17073/1997-308X-2019-2-57-67

Abstract

The article focuses on the preparation of amorphous coatings on the Steel 1035 surface by electric spark treat the coating composition control by changing the granule mixture composition was studied. EDS analysis showed that the coatings obtained contain W, Mo, Co and Ni in different ratios. The weight of granules having different compositions decreased by 11–16 wt.% in 6 hours of treatment as a result of electric erosion. The mass transfer coefficient varied from 33 to 54 %. X-ray diffraction analysis showed the predominance of the amorphous phase in the composition of layers deposited. Annealing of the coatings at 1150 °C led to amorphous phase crystallization into M23(C,B)6 type borocarbide and α-Fe. The coatings had an increased microhardness of 10–15 GPa, and their wear resistance under dry sliding wear conditions at 10 and 50 N loads was 3,3 and 1,6 times higher, respectively, than in Steel 1035. The highest values at both loads were shown by samples without nickel, while samples without tungsten featured the lowest values. The coatings had a friction coefficient within 0,27–0,31 that is lower than for Steel 1035 by 13–30 %. Wear resistance of the coatings under dry abrasive wear conditions at the 25 N load was 3 to 5 times higher as compared to uncoated Steel 1035. Samples without nickel demonstrated the best performance, while samples without cobalt had the worst indicators. Thus, it was shown that tungsten and cobalt increase wear resistance of iron-based amorphous alloys, while nickel and molybdenum tend to worsen their tribotechnical behavior.

About the Authors

A. A. Burkov
Institute of Materials Science, the Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

Cand. Sci. (Phys.-Math.), Senior researcher laboratory of functional materials and coatings

680042, Russia, Khabarovsk, Tikhookeanskaya str., 153



V. О. Krutikova
Institute of Tectonics and Geophysics the Far Eastern Science Branch of the Russian Academy of Sciences
Russian Federation

Junior researcher, Laboratory of physical and chemical research methods

680000, Russia, Khabarovsk, Kim Yu Chen str., 65



References

1. Zhang C., Chu Z., Wei F., Qin W., Yang Y., Dong Y., Huang D., Wang L. Optimizing process and the properties of the sprayed Fe-based metallic glassy coating by plasma spraying. Surf. Coat. Technol. 2017. Vol. 319. P. 1—5. DOI: 10.1016/j.surfcoat.2017.03.063.

2. Chang J.-C., Lee J.-W., Lou B.-S., Li C.-L., Chu J.P. Effects of tungsten contents on the microstructure, mechanical and anticorrosion properties of Zr—W—Ti thin film metallic glasses. Thin Solid Films. 2015. Vol. 584. P. 253—256. DOI: 10.1016/j.tsf.2015.01.063.

3. Bekish Y.N., Poznyak S.K., Tsybulskaya L.S., Gaevskaya T.V., Kukareko V.A., Mazanik A.V. Electrodeposited Ni—Co— B alloy coatings: Preparation and properties. J. Electrochem. Soc. 2014. Vol. 161. P. 620—627. DOI: 10.1149/2.1151410jes.

4. Concustell A., Henao J., Dosta S., Cinca N., Cano I.G., Guilemany J.M. On the formation of metallic glass coatings by means of cold gas spray technology. J. Alloys Compd. 2015. Vol. 651. P. 764—772. DOI: 10.1016/j.jallcom.2015.07.270.

5. Zhang H., Hu Y., Hou G., An Y., Liu G. The effect of high-velocity oxy-fuel spraying рarameters on microstructure, corrosion and wear resistance of Fe-based metallic glass coatings. J. Non-Cryst. Solids. 2014. Vol. 406. P. 37—44. DOI: 10.1016/j.jnoncrysol.2014.09.041.

6. Lan X., Wu H., Liu Y., Zhang W., Li R., Chen S., Zai X., Hu T. Microstructures and tribological properties of laser cladded Ti-based metallic glass composite coatings. Mater. Charact. 2016. Vol. 120. P. 82—89. DOI: 10.1016/j.matchar.2016.08.026.

7. Kuznetsov I.S. Electrospark coatings of amorphous and nanocrystalline iron-based alloys. Izv. vuzov. Poroshk. metallurgiya i funkts. pokrytiya. 2016. No. 2. С. 63—70 (In Russ.). DOI: 10.17073/1997308X-2016-2-63-70.

8. Wang X.-R., Wang Z.-Q., Lin T.-S., He P. Mass transfer trends of AlCoCrFeNi high-entropy alloy coatings on TC11 substrate via electrospark — computer numerical control deposition. J. Mater. Process. Technol. 2017. Vol. 241. P. 93—102. DOI: 10.1016/j.jmatprotec.2016.09.012.

9. Burkov A.A., Pyachin S.A. Formation of WC—Co coating by a novel technique of electrospark granules deposition. Mater. Des. 2015. Vol. 80. P. 109—115. DOI: 10.1016/j.matdes.2015.05.008.

10. Burkov A.A. Deposition of metallic glass coatings by electrospark processing in the medium of granules of Fe39Ni8Cr7W7Mo7Co2C16B14 composition. Pis’ma o materialakh. 2017. Vol. 7(3). P. 254—259 (In Russ.). DOI: 10.22226/2410-3535-2017-3-254-259.

11. Liu W.-H., Shieu F.-S., Hsiao W.-T. Enhancement of wear and corrosion resistance of iron-based hard coatings deposited by high-velocity oxygen fuel (HVOF) thermal spraying. Surf. Coat. Technol. 2014. Vol. 249. P. 24—41. DOI: 10.1016/j.surfcoat.2014.03.041.

12. Zhu K., Jiang W., Wu J., Zhang B. Effect of Mo on properties of the industrial Fe—B-alloy-derived Fe-based bulk metallic glasses. Int. J. Miner., Metall. Mater. 2017. Vol. 24. P. 926—930. DOI: 10.1007/s12613-017-1479-1.

13. Wang W.-M., Zhang W.X., Gebert A., Mickel C., Schultz L. Microstructure and magnetic properties in Fe61Co9-x Zr8Mo5WxB17 (0  ×  3) glasses and glass-matrix composites. Metall. Mater. Trans. A. 2009. Vol. 40(3). P. 511—521. DOI: 10.1007/s11661-008-9706-z.

14. Liang D.-D., Wei X.-S., Chang C.-T., Li J.-W., Wang X.-M., Shen J. Effect of W addition on the glass forming ability and mechanical properties of Fe-based metallic glass. J. Alloys Compd. 2018. Vol. 731. P. 1146—1150. DOI: 10.1016/j.jallcom.2017.10.104.

15. Wiest A., Wang G., Huang L., Roberts S., Demetriou M.D., Liaw P.K., Johnson W.L. Corrosion and corrosion fatigue of Vitreloy glasses containing low fractions of late transition metals. Scripta Mater. 2010. Vol. 62. P. 540—543. DOI: 10.1016/j.scriptamat.2009.12.025.

16. Liu W.-H., Shieu F.-S., Hsiao W.-T. Enhancement of wear and corrosion resistance of iron-based hard coatings deposited by high-velocity oxygen fuel (HVOF) thermal spraying. Surf. Coat. Technol. 2014. Vol. 249. P. 24—41. DOI: 10.1016/j.surfcoat.2014.03.041.

17. Ciftci N., Ellendt N., Soares Barreto E., Madler L., Uhlenwinkel V. Increasing the amorphous yield of (Fe0.6Co0.4)0.75B0.2Si0.0596Nb4 powders by hot gas atomization. Adv. Powder Technol. 2018. Vol. 29. P. 380—385. DOI: 10.1016/j.apt.2017.11.025.

18. Zamulaeva E.I., Levashov E.A., Kudryashov A.E., Vakaev P.V., Petrzhik M.I. Electrospark coatings deposited onto an Armco iron substrate with nanoand microstructured WC—Co electrodes: Deposition process, structure, and properties. Surf. Coat. Technol. 2008. Vol. 202. P. 3715— 3722. DOI: 10.1016/j.surfcoat.2008.01.008.

19. Shkodich N.F., Rogachev A.S., Vadchenko S.G., Kovalev I.D., Nepapushev A.A., Ruvimov S.S., Mukasyan A.S. Formation of amorphous structures and their crystallization in the Cu-Ti system under the influence of high-energy machining. Izv. vuzov. Poroshk. metallurgiya i funkts. pokrytiya. 2017. No. 2. P. 14—21 (In Russ.). DOI:10.17073/1997-308X-2017-2-14-21.

20. Cheng J., Wang B., Liu Q., Liang X. In-situ synthesis of novel Al—Fe—Si metallic glass coating by arc spraying. J. Alloys Compd. 2017. Vol. 16. P. 88—95. DOI: 10.1016/j.jallcom.2017.05.032.

21. Goldschmidt H.J. Interplanar spacings of carbides in steels. Metallurgia. 1949. Vol. 40. P. 103—104.

22. Salmaliyan M., Malek Ghaeni F., Ebrahimnia M. Effect of electro spark deposition process parameters on WC-Co coating on H13 steel. Surf. Coat. Technol. 2017. Vol. 321. P. 81—89. DOI: 10.1016/j.surfcoat.2017.04.04.

23. Greer A.L., Rutherford K.L., Hutchings I.M. Wear resistance of amorphous alloys and related materials. Int. Mater. Rev. 2002. Vol. 47. P. 87—112. DOI: 10.1179/095066001225001067.

24. Vashishtha N., Sapate S.G. Abrasive wear maps for High Velocity Oxy Fuel (HVOF) sprayed WC-12Co and Cr3C2— 25NiCr coatings. Tribology International. 2017. Vol. 114. P. 290—305. DOI: 10.1016/j.triboint.2017.04.037.

25. Wang Y., Jiang S.L., Zheng Y.G., Ke W., Sun W.H., Wang J.Q. Effect of molybdenum, manganese and tungsten contents on the corrosion behavior and hardness of iron-based metallic glasses. Mater. and Corros. 2014. Vol. 65. P. 733-741. DOI: 10.1002/maco.201206740.

26. Hutchings I.M. Mechanism of wear in powder technology: a review. Powder Technol. 1993. Vol. 76. P. 3—13. DOI: 10.1016/0032-5910(93)80035-9.


Review

For citations:


Burkov A.A., Krutikova V.О. Deposition of amorphous hardening coatings by electrospark treatment in a crystalline granule mixture. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2019;(2):57-67. (In Russ.) https://doi.org/10.17073/1997-308X-2019-2-57-67

Views: 847


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)