Structure and phase composition of SHS products in titanium, carbon and aluminum reactive mixtures
https://doi.org/10.17073/1997-308X-2019-3-26-35
Abstract
The TiC + Al binder metal matrix composites were obtained by self-propagating high-temperature synthesis (SHS) in the reactive powder mixtures of titanium, carbon (carbon black) and aluminum. It was found that a steady-state wave combustion occurs when the aluminum powder content in reactive mixtures does not exceed 50 wt.%. Loose SHS cakes obtained during synthesis were crashed and screened to get lumpy, nearly equlaxial composite powders favorable to good flowability necessary for powder application in cladding and spraying of wear-resistant coatings. The synthesis products were studied by scanning electron microscopy, X-ray diffraction (XRD) and local energy-dispersive X-ray spectroscopy (EDX). It was found that the average size of carbide inclusions in the composite structure depends on the content of thermally inert aluminum powder in the reaction mixtures. The titanium carbide lattice parameter determined by XRD turned out to be slightly below the known values for equiatomic titanium carbide. However, no any dependence of the lattice parameter on the aluminum content in composites was found. TiC inclusions in the composite structure were investigated by EDX spectroscopy. Titanium content in the carbide was close to that in equiatomic titanium carbide. Titanium carbide contains up to 2.5 wt.% aluminum in addition to titanium and carbon. Aluminum dissolution in the carbide lattice can influence the lattice parameter.
About the Authors
G. A. PribytkovRussian Federation
Dr. Sci. (Tech.), Chief research scientist of Laboratory of nanostructured functional materials physics
634055, Tomsk, Akademicheskii pr., 2/4
M. G. Krinitsyn
Russian Federation
Technologist of Laboratory of nanostructured functional materials physics
Postgraduate
634050, Tomsk, pr. Lenina, 30
V. V. Korzhova
Russian Federation
Cand. Sci. (Tech.), Research scientist of Laboratory of of nanostructured functional materials physics
A. V. Baranovskiy
Russian Federation
Technologist of Laboratory of nanostructured functional materials physics
Postgraduate
References
1. Yang Chen, Jin Songzhe, Liang Baoyan, Liu Guojun, Duan Lianfeng, Jia Shusheng. Synthesis of Ti3AlC2 by spark plasma sintering of mechanically milled 3Ti/xAl/2C powder mixtures. J. Alloys and Compd. 2009. Vol. 472. P. 79—83.
2. Zhou Aiguo, Wang Chang-an, Ge Zhenbin, Wu Lifeng. Preparation of Ti3AlC2 and Ti2AlC by self-propagating hightemperature synthesis. J. Mater. Sci. Lett. 2001. Vol. 20. P. 1971—1973
3. Birol Yucel. Grain refining efficiency of Al—Ti—C alloys. J. Alloys and Compd. 2006. Vol. 422. P.128—131.
4. Ding Haimin, Liu Xiangfa, Yu Lina, Zhao Guoqun. The influence of forming processes on the distribution and morphologies of TiC in Al—Ti—C master alloys. Scripta Mater. 2007. Vol. 57. P. 575—578.
5. Gezer Berke Turgay, Toptan Fatih, Daglilar Sibel, Kerti Isil. Production of Al—Ti—C grain refiners with the addition of elemental carbon. Mater. Design. 2010. Vol. 31. Р. 30—35.
6. Nie Jinfeng, Ma Xiaoguang, Li Pengting, Liu Xiangfa. Effect of B/C ratio on the microstructure and grain refining efficiency of Al—Ti—C—B master alloy. J. Alloys and Compd. 2011. Vol. 509. P. 1119—1123.
7. Wang Enzhao, Gao Tong, Nie Jinfeng, Liu Xiangfa. Grain refinement limit and mechanical properties of 6063 alloy inoculated by Al—Ti—C (B) master alloys. J. Alloys and Compd. 2014. Vol. 594. P. 7—11.
8. Liu Xiaoteng, Hao Hai. The influence of carbon content on Al—Ti—C master alloy prepared by the self-propagating high-temperature synthesis in melt method and its refining effect on AZ31 alloy. J. Alloys and Compd. 2015. Vol. 623. P. 266—273.
9. Yang Huabing, Gao Tong, Wang Haichao, Nie Jinfeng, Liu Xiangfa. Influence of C/Ti stoichiometry in TiCx on the grain refinement efficiency of Al—Ti—C master alloy. J. Mater. Sci. Technol. 2017. Vol. 33. P. 616—622.
10. Луц А.Р., Амосов А.П., Ермошкин Анд.А., Ермошкин Ант.А., Никитин К.В., Тимошкин И.Ю. Самораспространяющийся высокотемпературный синтез высокодисперсной фазы карбида титана из смеси порошков в расплаве алюминия. Изв. вузов. Порошк. металлургия и функц. покрытия. 2013. No. 3. С. 28—35. Luts A.R., Amosov A.P., Ermoshkin And. A., Ermoshkin Ant.A., Nikitin K.V., Timoshkin I.Yu. Self propagating high temperature synthesis of highly dispersed titanium carbide phase from powder mixtures in the aluminum melt. Russ. J. Non-Ferr. Met. 2014. Vol. 55. No. 6. P. 606—612.
11. Shahin N., Kazemi Sh., Heidarpour A. Mechanochemical synthesis mechanism of Ti3AlC2 MAX phase from elemental powders of Ti, Al and C. Adv. Powd. Technol. 2016. Vol. 27. P. 1775—1780.
12. Stolin A.M., Vrel D., Galyshev S.N., Hendaoui A., Bazhin P.M., Sytschev A.E. Hot forging of MAX compounds SHS-produced in the Ti—Al—C System. Int. J. of SHS. 2009. Vol. 18. No. 3. P. 194—199.
13. Hendaoui A., Vrel D., Amara A., Langlois P., Andasmas M., Guerioune M. Synthesis of high-purity polycrystalline MAX phases in Ti—Al—C system through mechanically activated self-propagating high-temperature synthesis. J. Eur. Ceram. Soc. 2010. Vol. 30. P. 1049—1057.
14. Zhou Aiguo, Wang Chang-an, Huang Yong. A possible mechanism on synthesis of Ti3AlC2. Mater. Sci. Eng. A. 2003. Vol. 352. No. 1-2. P. 333—339.
15. Hendaoui A., Andasmas M., Amara A., Benaldjia A., Langlois P., Vrel D. SHS of high-purity MAX compounds in the Ti—Al—C system. Int. J. of SHS. 2008. Vol. 17. No. 2. P. 129—135.
16. Potanin A.Yu., Loginov P.A., Levashov E.A., Pogozhev Yu.S., Patsera E.I., Kochetov N.A. Effect of mechanical activation on Ti3AlC2 MAX phase formation under self-propagating high-temperature synthesis. Eur. Chem.-Technol. J. 2015. Vol. 17. P. 233—242.
17. Tzenov N.V., Barsoum M.W. Synthesis and Characterization of Ti3AlC2. J. Amer. Ceram. Soc. 2000. Vol. 83(4). P. 825—832.
18. Yoshida Michiyuki, Hoshiyama Yasuhiro, Ommyoji Junji, Yamaguchi Akira. Microstructural evolution during the formation of Ti3AlC2. Mater. Sci. Eng. B. 2010. Vol. 173. No. 1-3. P. 126—129.
19. Liu Zhiwei, Rakita Milan, Xu Wilson, Wang Xiaoming, Han Qingyou. Ultrasound assisted combustion synthesis of TiC in Al—Ti—C system. Ultrasonics Sonochemistry. 2015. Vol. 27. P. 631—637.
20. Chaubey A.K., Prashanth K.G., Ray N., Wang Zhi. Study on in-situ synthesis of Al—TiC composite by self propagating high temperature synthesis process. Mater. Sci. 2015. Vol. 12. No. 12. P. 454—461.
21. Li Y.X., Hu J.D., Liu Y.H., Yang Y., Guo Z.X. Effect of C/Ti ratio on the laser ignited self-propagating high-temperature synthesis reaction of Al—Ti—C system for fabricating TiC/Al composites. Mater. Lett. 2007. Vol. 61. P. 4366—4369.
22. Song M.S., Huang B., Huo Y.Q., Zhang S.G., Zhang M.X., Hu Q.D., Li J.G. Growth of TiC octahedron obtained by self-propagating reaction. J. Crystal Growth. 2009. Vol. 311. P. 378—382.
23. Li Y.X., Hu J.D., Liu S.Y., Wang H.Y., Yang Y., Guo Z.X. Laser igniting synthesis of powders with Al, Ti and C powders. J. Laser Appl. 2006. Vol. 18. No. 2. P. 113—116.
24. Song M.S., Huang B., Zhang M.X., Li J.G. Study of formation behavior of TiC ceramic obtained by self-propagating high-temperature synthesis from Al—Ti—C elemental powders. Int. J. Refract. Met. Hard Mater. 2009. Vol. 27. P. 584—589.
25. Li Y.X., Hu J.D., Wang H.Y., Guo Z.X., Chumakov A.N. Thermodynamic and lattice parameter calculation of TiCx produced from Al—Ti—C powders by laser igniting self-propagating high-temperature synthesis. Mater. Sci. Eng. A. 2007. Vol. 458. P. 235—239.
26. Прибытков Г.А., Криницын М.Г., Коржова В.В. Исследование продуктов СВ-синтеза в порошковых смесях титана и углерода, содержащих избыток титана. Перспективные материалы. 2016. No. 5. C. 59—68. Pribytkov G.A., Krinitsyn M.G., Korzhova V.V. Investigation of products of SHS in powder mixtures of titanium and carbon containing an excess of titanium. Perspektivnye materialy. 2016. No. 5. P. 59—68 (in Russ.).
27. Прибытков Г.А., Коржова В.В., Барановский А.В., Криницын М.Г. Фазовый состав и структура композиционных порошков карбида титана со связкой из стали Р6М5, полученных методом СВС. Изв. вузов. Порошк. металлургия и функц. покрытия. 2017. No. 2. C. 64—71. Pribytkov G.A., Korzhova V.V., Baranovskiy A.V., Krinitsyn M.G. Phase composition and structure of composite powders of titanium carbide with a bundle of P6M5 steel obtained by the SHS method. Izv. vuzov. Poroshk. metallurgiya i funkts. pokrytiya. 2017. No. 2. P. 64—71 (In Russ.).
28. Прибытков Г.А., Криницын М.Г., Фирсина И.А., Дураков В.Г. Твердость и абразивная износостойкость электронно-лучевых покрытий «карбид титана — титановая связка», наплавленных синтезированными композиционными порошками. Вопросы материаловедения. 2017. No. 4. C. 52—61. Pribytkov G.A., Krinitsyn M.G., Firsina I.A., Durakov V.G. Hardness and abrasive wear resistance of electronbeam coatings «titanium carbide — titanium binder», cladded with synthesized composite powders. Voprosy materialovedeniya. 2017. No. 4. P. 52—61 (In Russ.).
29. Pribytkov G.A., Kalita V.I., Komlev D.I., Korzhova V.V., Radyuk A.A., Baranovsky A.V., Ivannikov A.Yu., Krinitcyn M.G., Mikhailova A.B. Structure and wear resistance of plasma coatings sputtered using TiC + HSS binder composite powder. Inorg. Mater.: Appl. Res. 2018. Vol. 9. No. 3. P. 442—450.
30. Прибытков Г.А., Барановский А.В., Фирсина И.А., Дураков В.Г., Криницын М.Г. Твердость и абразивная износостойкость электронно-лучевых покрытий, наплавленных СВС композиционными порошками «TiC + сталь Р6М5». Упрочняющие технологии и покрытия. 2017. No. 10. C. 446—452. Pribytkov G.A., Baranovsky A.V., Firsina I.A., Durakov V.G., Krinitsyn M.G. Hardness and abrasive wear resistance of electron beam coatings deposited by SHS composite powders «TiC + steel P6M5». Uprochnyayushchie tekhnologii i pokrytiya. 2017. No. 10. P. 446—452 (In Russ.).
31. Зуев Л.В., Гусев А.И. Влияние нестехиометрии и упорядочения на период базисной структуры кубического карбида титана. Физика твердого тела. 1999. Т. 41. No. 4. C. 1134—1141. Zuev L.V., Gusev A.I. Influence of nonstoichiometry and ordering on the period of the basic structure of cubic titanium carbide. Fizika tverdogo tela. 1999. Vol. 41. No. 4. P. 1134—1141 (In Russ.).
32. Zhang W.N., Wang H.Y., Wang P.J., Zhang J., He L., Jiang Q.C. Effect of Cr content on the SHS reaction of Cr—Ti—C system. J. Alloys and Compd. 2008. Vol. 465. P. 127—131.
33. Рогачев А.С., Мукасьян А.С. Горение для синтеза материалов: введение в структурную макрокинетику. М.: Физматлит, 2012. Rogachev A.S., Mukas’yan A.S. Combustion for the synthesis of materials: an introduction to structural macrokinetics. Mosсow: Fizmatlit, 2012 (In Russ.).
Review
For citations:
Pribytkov G.A., Krinitsyn M.G., Korzhova V.V., Baranovskiy A.V. Structure and phase composition of SHS products in titanium, carbon and aluminum reactive mixtures. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2019;(3):26-35. (In Russ.) https://doi.org/10.17073/1997-308X-2019-3-26-35