Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Temperature dependence of TiN/TiAl3/Ti2AlN composite material electric resistivity

https://doi.org/10.17073/1997-308X-2019-3-36-41

Abstract

The TiN/TiAl3/Ti2AlN composite material was obtained by filtration combustion of the porous TiAl intermetallic samples in gaseous nitrogen. X-ray phase analysis of combustion products provided data to calculate the weight content of each phase as follows: 42 wt.% TiN, 35 wt.% TiAl3, 20 wt.% Ti2AlN and 3 wt.% TiAl. The synthesized composite material containing Ti2AlN МАХ phase features good electrical conductivity of a metallic nature. Specific electrical resistance of the synthesized material was measured by a standard 4-point procedure at constant current in the temperature range 300–1300 K in vacuum 2·10–3 Pa. It was found that specific electrical resistance grows linearly from 0.35 to 1.25 μΩ·m as temperature rises. Subsequent measurements of this indicator at the following heating/cooling cycles demonstrated full agreement of obtained results. This fact indicates that the material has stable electrophysical properties in the investigated temperature range.

About the Authors

A. A. Kondakov
Merzhanov Institute of Structural Macrokinetics and Materials Science (ISMAN), Russian Academy of Sciences
Russian Federation

Research assistant, Laboratory of мacrokinetics of SHS in peactors

142432, Moscow reg., Chernogolovka, Academician Osipyan str., 8



A. V. Karpov
Merzhanov Institute of Structural Macrokinetics and Materials Science (ISMAN), Russian Academy of Sciences
Russian Federation
Research scientist, Materials science laboratory


V. V. Grachev
Merzhanov Institute of Structural Macrokinetics and Materials Science (ISMAN), Russian Academy of Sciences
Russian Federation
Cand. Sci. (Phys.-Math.), Deputy director for scientific work


A. E. Sytschev
Merzhanov Institute of Structural Macrokinetics and Materials Science (ISMAN), Russian Academy of Sciences
Russian Federation
Cand. Sci. (Tech.), Leading researcher, Head of Material science laboratory


References

1. Ивановский А.Л. Тройные карбиды и нитриды на основе переходных металлов и элементов IIIB и IVB подгрупп: Электронное строение и химическая связь. Успехи химии. 1996. Т. 65. No. 6. С. 499—518. Ivanovskii A.L. Ternary carbides and nitrides based on transition metals and subgroup IIIB, IVB elements: Electronic structure and chemical bonding. Russ. Chem. Rev. 1996. Vol. 65. No. 6. P. 461—478. DOI: 10.1070/ RC1996v065n06ABEH000299.

2. Barsoum M., Brodkin D., El-Raghy T. Layered machinable ceramics for high temperature applications. Scripta Mater. 1997. Vol. 36. No. 5. P. 535—541. DOI: 10.1016/ S1359-6462(96)00418-6.

3. Lin Z., Zhuo M., Li M., Wang J., Zhou Y. Synthesis and microstructure of layered-ternary Ti2AlN ceramic. Scripta Mater. 2007. Vol. 56. No. 12. P. 1115—1118. DOI: 10.1016/j.scriptamat.2007.01.049.

4. Low I.M., Sakka Y., Hu C.F. MAX phases and ultra-high temperature ceramics for extreme environments. USA: IGI Global, 2013. DOI: 10.13140/RG.2.1.1176.5601.

5. Ковалев Д.Ю., Лугинина М.А., Сычев А.Е. Реакционный синтез МАХ-фазы Ti2AlN. Порошк. металлургия и функц. покрытия. 2016. No. 2. С. 41—46. DOI: 10.17073/1997-308X-2016-2-41-46. Kovalev D.Yu., Luginina M.A., Sytschev A.E. Reaction synthesis of the Ti2AlN MAX-phase. Russ. J. Non-Ferr. Met. 2017. Vol. 58. No. 3. P. 303—307. DOI: 10.3103/ S1067821217030087.

6. Barsoum M., Ali M., El-Raghy T. Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5. Metal. Mater. Trans. A. 2000. Vol. 31. No. 7. P. 1857—1865. DOI: 10.1007/s11661-006-0243-3.

7. Liu Y., Shi Z., Wang J., Qiao G., Jin Z., Shen Z. Reactive consolidation of layered-ternary Ti2AlN ceramics by spark plasma sintering of a Ti/AlN powder mixture. J. Eur. Ceram. Soc. 2011. Vol. 31. No. 5. P. 863—868. DOI: 10.1016/j.jeurceramsoc.2010.11.018.

8. Yembadi Rajkumar, Bharat B. Panigrahi. Thermodynamic assessments and mechanically activated synthesis of ultrafine Cr2AlC MAX phase powders. Adv. Powder Technol. 2017. Vol. 28. No. 3. P. 732—739. DOI: 10.1016/j.apt. 2016.11.020.

9. Колесников С.И., Кондаков А.А., Милосердов П.А., Новицкий И.М., Бардин М.А. Определение оптимальных условий синтеза в тройной системе Ti—Al—N для получения продуктов, содержащих наибольшее количество MAX-фаз. Башкир. хим. журн. 2012. Т. 19. No. 4. С. 162—165. Kolesnikov S.I., Kondakov A.A., Miloserdov P.A., Novitsky I.M., Bardin M.A. Optimization of synthesis conditions in Ti—Al—N ternary system to obtain products with the most containment of MAX-phases. Bashkir. khimicheskiy zhurnal. 2012. Vol. 19. No. 4. P. 162—165 (In Russ.).

10. Haddad N., Garcia-Caurel E., Hultman L., Barsoum M.W., Hug G. Dielectric properties of Ti2AlC and Ti2AlN MAX phases: The conductivity anisotropy. J. Appl. Phys. 2008. Vol. 104. No. 023531. DOI: 10.1063/1.2960340.

11. Dongli Sun, Tao Sun, Qing Wang, Xiuli Han, Qiang Guo, Gaohui Wu. Fabrication of in situ Ti2AlN/TiAl composites by reaction hot pressing and their properties. J. Wuhan Univ. Technol.-Mat. Sci. 2014. Vol. 29. Iss. 1. P.126—130. DOI: 10.1007/s11595-014-0879-6.

12. Djedid A., Mecabih S., Abbes O., Abba B. Theoretical investigations of structural, electronic and thermal properties of Ti2AlX (X = C, N). Physica B: Condensed Mater. 2009. Vol. 404. No. 20. P. 3475—3482. DOI: 10.1016/j. physb.2009.05.048.

13. Borysiewicz M.A., Kaminska E., Piotrowska A., Pasternak I., Jakiela R., Dynowska E. Ti—Al—N MAX phase, a candidate for ohmic contacts to n-GaN. Acta Phys. Polonica A. 2008. Vol. 114. No. 5. P. 1061—1066. DOI: 10.12693/APhysPolA.114.1061.

14. Scabarozi T., Ganguly A., Hettinger J.D., Lofland S.E., Amini S., Finkel P., El-Raghy T., Barsoum M.W. Electronic and thermal properties of Ti3Al(C0.5,N0.5)2, Ti3Al(C0.5,N0.5)2, Ti2Al(C0.5,N0.5), Ti2Al(C0.5,N0.5) and Ti2AlN. J. Appl. Phys. 2008. Vol. 104. No. 073713. DOI: 10.1063/1.2979326.

15. Карпов А.В., Морозов Ю.Г., Бунин В.А., Боровинская И.П. Влияние оксида иттрия на электропроводность нитридной СВС-керамики. Неорган. матер. 2002. Т. 38. No. 6. С. 762—766. Karpov A.V., Morozov Yu.G., Bunin V.A., Borovinskaya I.P. Effect of yttrium oxide on electric conductivity of SHS nitrogen ceramics. Neorganicheskie materially. 2002. Vol. 38. No. 6. P. 762—766 (In Russ.).

16. Borovinskaya I.P., Bunin V.A., Vishnyakova G.A., Karpov A.V. Some specific features of synthesis and characteristics of (TiB2—AlN—BN)-based ceramic materials. Int. J. SHS. 1999. Vol. 8. No. 4. P. 451—457.

17. Liu Wulong, Qiu Changjun, Zhou Jie, Ding Zhihui, Zhou Xiaobing, Du Shiyu, Han Young-Hwan, Huang Qing. Fabrication of Ti2AlN ceramics with orientation growth behavior by the microwave sintering method. J. Eur. Ceram. Soc. 2015. Vol. 35. No. 5. P. 1385—1391. DOI: 10.1016/ j.jeurceramsoc.2014.11.020.

18. Joelsson T., Horling A., Birch J., Hultman L. Single-crystal Ti2AlN thin films. Appl. Phys. 2005. Vol. 86. No. 111913. DOI: 10.1063/1.1882752.

19. Sundgren J.E., Johansson B.O., Rockett A., Barnett S.A., Greene J.E. Physics and chemistry of protective coatings. AIP Conf. Proc. (New York). 1986. No. 149. P. 95.

20. Андриевский Р.А., Калинников Г.В., Кобелев Н.П., Сойфер Я.М., Штанский Д.В. Структура и физико-механические свойства наноструктурных боронитридных пленок. ФТТ. 1997. Т. 39. No. 10. С. 1859—1864. Andrievsky R.A., Kalinnikov G.V., Kobelev N.P., Soyfer Ya.M., Shtansky D.V. Structure and physicomechanical properties of boron nitride nanostructured films. Fizika tverdogo tela. 1997. Vol. 39. No. 10. P. 1859—1864 (In Russ.).

21. Veeraraghavan D., Pilchowski U., Natarajan B., Vasudevan V.K. Phase equilibria and transformations in Ti— (25—52) at.% Al alloys studied by electrical resistivity measurements. Acta Mater. 1998. Vol. 46. No. 2. P. 405— 421. DOI: 10.1016/S1359-6454(97)00274-7.

22. Григорян А.Э., Елистратов Н.Г., Ковалев Д.Ю., Мержанов А.Г., Носырев А.Н., Пономарев В.И., Рогачев А.С., Хвесюк В.И., Цыганков П.А. Автоволновое распространение экзотермических реакций в тонких многослойных пленках системы Ti—Al. Докл. АН. 2001. Т. 381. No. 3. С. 368—372. Grigoryan A.E., Elistratov N.G., Kovalеv D. Yu., Merzhanov A.G., Nosyrev A.N., Ponomarev V.I., Rogachev A.S., Khvesyuk V.I., Tsygankov P.A. Autowave propogation of exothermic reactions in the thin multilayer films of Ti—Al system. Doklady AN. 2001. Vol. 381. No. 3. P. 368—372 (In Russ.).

23. Bel’skaya E.A., Kulyamina E.Y. Electrical resistivity of titanium in the temperature range from 290 to 1800 K. High Temp. 2007. Vol. 45. No. 785. DOI: 10.1134/ S0018151X07060090.


Review

For citations:


Kondakov A.A., Karpov A.V., Grachev V.V., Sytschev A.E. Temperature dependence of TiN/TiAl3/Ti2AlN composite material electric resistivity. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2019;(3):36-41. (In Russ.) https://doi.org/10.17073/1997-308X-2019-3-36-41

Views: 785


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)