Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Investigation of TiB2–TiN eutectic alloy obtained by combustion synthesis for chemical resistance in mineral acid media

https://doi.org/10.17073/1997-308X-2019-3-42-48

Abstract

The article presents the results obtained in the corrosion resistance study of TiB2/TiN eutectic alloy powder in HCl and HNO3 mineral acids. Experiments were carried out on samples synthesized in the combustion mode and then ground in an agate vessel. The morphology, size distribution and specific surface area of particles were determined in the obtained powder samples. Corrosion resistance experiments were conducted with varying acid concentration from 0.2 to 6.0 M and process temperature from 25 to 80 °C. Chemical analysis of the studied products of interaction with an aggressive medium was carried out to determine the content of main elements in them (titanium, boron, nitrogen) using methods developed for refractory compounds. As a result of the work carried out, it was shown that samples have the greatest resistance when interacting with solutions of diluted acids at room temperature, and their resistance decreases as acid concentration and/or process temperature rises. It was found that interaction with the acid occurs with both TiB2 and TiN phases in all cases considered in the paper. At the same time, the reaction involving the TiB2 phase was faster. For the first time deep corrosion and corrosion resistance of the alloy in HCl and HNO3 media were measured at room temperature and 1.0 M acid concentration. Based on the obtained data, the investigated alloy was classified as a «resistant» material. Corrosion resistance by a ten-point scale in HCl and HNO3 media was «4» and «5», respectively.

About the Authors

T. I. Ignatieva
Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN)
Russian Federation

Cand. Sci. (Chem.), Leading scientist, Laboratory of chemical analysis 

142432, Moscow reg., Chernogolovka, Acad. Osipyan str., 8



A. G. Tarasov
Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN)
Russian Federation
Cand. Sci. (Tech.), Senior research officer, Laboratory of combustion of dispersed systems


V. N. Semenova
Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN)
Russian Federation
Research scientist, Laboratory of chemical analysis


I. A. Studenikin
Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN)
Russian Federation
Research scientist, Laboratory of macrokinetics of SHS in reactors


Yu. A. Karozina Yu.A.
Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN)
Russian Federation
Junior researcher, Laboratory of chemical analysis


References

1. Чупов В.Д., Орданьян С.С., Козловский Л.В. Исследование взаимодействия в системе TiNx—TiB2. Неорган. материалы. 1981. T. 17. No. 9. C. 1618—1622. Chupov V.D., Ordan'yan S.S., Kozlovskii L.V. Investigation of the interaction in the TiNx–TiB2 system. Neorgan. materialy. 1981. Vol. 17. No. 9. P. 1618—1622 (In Russ.).

2. Lee J.W., Munir Z.A., Shibuya M., Ohyanagi M. Synthesis of dense TiB2—TiN nanocrystalline composites through mechanical and field activation. J. Amer. Cer. Soc. 2001. Vol. 84. No. 6. P. 1209—1216. DOI: 10.1111/j.1151-2916. 2001.tb00818.x.

3. Shibuya M., Ohyanagi M., Munir Z.A. Simultaneous synthesis and densification of titanium nitride/titanium diboride composites by high nitrogen pressure combustion. J. Amer. Ceram. Soc. 2002. Vol. 12. P. 2965—2970. DOI: 10.1111/j.1151-2916.2002.tb00564.x.

4. Holleck, H., Schulz H. Preparation and behaviour of wear-resistant TiC/TiB2, TiN/TiB2 and TiC/TiN coatings with high amounts of phase boundaries. Surf. Coat. Technol. 1988. Vol. 36. No. 3-4. P. 707—714. DOI: 10.1016/0257-8972(88)90011-4.

5. Kitiwan M., Ito A., Goto T. Spark plasma sintering of TiN— TiB2 composites. J. Eur. Ceram. Soc. 2014. Vol. 34. No. 2. P. 197—203. DOI: 10.1016/j.jeurceramsoc.2013.08.034.

6. Gissler W. Structure and properties of Ti—B—N coatings. Surf. Coat. Technol. 1994. Vol. 68-69. P. 556—563. DOI:10.1016/0257-8972(94)90217-8.

7. Levashov E.A., Mukasyan A.S., Rogachev A.S., Shtansky D.V. Self-propagating high-temperature synthesis of advanced materials and coatings. Int. Мater. Rev. 2017. Vol. 62. No. 4. P. 203—239. DOI: 10.1080/09506608.2016.1243291.

8. Mukasyan A.S., Shuck C.E. Kinetics of SHS reactions: A review. Int. J. SHS. 2017. No. 26. P. 145—165. DOI: 10.3103/S1061386217030049.

9. Тарасов А.Г., Студеникин И.А., Карозина Ю.А. Последовательность превращений при горении порошковых смесей титана с бором в среде азота. Хим. физика и мезоскопия. 2017. Т. 19. No. 4. C. 507—512. Tarasov A.G., Studenikin I.A., Karozina Yu.A. Sequence of transformation during combustion of powder mixtures of titanium and boron in nitrogen. Khimicheskaya fizika i mezoskopiya. 2017. Vol. 19. No. 4. P. 507—512 (In Russ.).

10. Григорян А.Э., Рогачев А.С. Горение титана с неметаллическими нитридами. Физика горения и взрыва. 2001. Т. 37. No. 2. C. 51—56. Grigoryan A.E., Rogachev A.S. Combustion of titanium with nonmetal nitrides. Combustion, explosion, and shock waves. 2001. Vol. 37. No. 2. P.202—206.

11. Yeh C.L., Teng G.S. Combustion synthesis of TiN—TiB2 composites in Ti/BN/N2 and Ti/BN/B reaction systems. J. Alloys and Compd. 2006. Vol. 424. P. 152—158. DOI: 10.1016/j.jallcom.2005.12.086.

12. Tomoshige R., Murayama A., Matsushita T. Production of TiB2—TiN composites by combustion synthesis and their properties. J. Amer. Ceram. Soc. 1997. Vol. 80. No. 3. P. 761— 764. DOI: 10.1111/j.1151-2916.1997.tb02894.x.

13. Рогачев А.С, Мукасьян А.С. Горение для синтеза материалов. М.: Физматлит, 2014. Rogachev A.S, Mukas’yan A.S. Combustion for material synthesis. 1-st ed. N. Y.: CRC Press Taylor & Francis Group, 2014.

14. Tarasov A.G., Studenikin I.A., Barinov Yu.N. Combustion of Ti—B mixtures in Аr coflow: Influence of hydrogen impurity in titanium. Int. J. SHS. 2017. Vol. 26. No. 2. P. 140—141. DOI: 10.3103/S1061386217020121.

15. Borovinskaya I.P. Chemical classes of the SHS processes and materials. Pure Appl. Chem. 1992. Vol. 64. No. 7. Р. 919—940.

16. Игнатьева Т.И., Милосердова О.М., Семенова В.Н., Боровинская И.П. Химическое диспергирование как метод выделения ультрадисперсных и наноразмерных порошков TiC. Перспект. матер. 2009. No. 3. C. 82—87. Ignat’eva T.I., Miloserdova O.M., Semenova V.N., Borovinskaya I.P. Chemical dispersion, as a method of separation of ultradisperse and nanosized TiC. Perspekt. materialy. 2009. No. 3. P. 82—87 (In Russ.).

17. Боровинская И.П., Игнатьева Т.И., Емельянова О.М., Вершинников В.И., Семенова В.Н. Самораспространяющийся высокотемпературный синтез ультра- и нанодисперсного порошка ТiС. Неорган. материалы. 2007. Т. 43. No. 11. C. 1343—1350. Borovinskaya I.P., Ignat’eva T.I., Emel’yanova O.M., Vershinnikov V.I., Semenova V.N. Self-propagating hightemperature synthesis of ultrafine and nanometer-sized TiC particles. Inorganic Mater. 2007. Vol. 43. No. 11. Р. 1206— 1214. DOI: 10.1134/S002016850711009X.

18. Коробов И.И., Калинников Г.В., Иванов А.В., Дремова Н.Н., Андриевский Р.А., Шилкин С.П. Коррозионная стойкость наноструктурных пленок диборида титана в растворах минеральных кислот. Физикохимия поверхности и защита материалов. 2016. Т. 52. No. 4. C. 382—385. DOI: 10.7868/S0044185616040173. Korobov I.I., Kalinnikov G.V., Ivanov A.V., Dremova N.N., Andrievski R.A., Shilkin S.P. Corrosion resistance of nanostructured films of titanium diboride in mineral acid solutions. Protect. Met. Phys. Chem. Surf. 2016. Vol. 52. No. 4. P. 618—621. DOI: 10.1134/S2070205116040171.

19. Самсонов Г.В., Кулик О.П., Полищук В.С. Получение и методы анализа нитридов. К.: Наук. думка, 1978. Samsonov G.V., Kulik O.P., Polishchuk V.S. Obtaining and methods for the analysis of nitrides. Kiev: Naukova Dumka, 1978 (In Russ.).

20. Косолапова Т.Я. (ред.). Свойства, получение и применение тугоплавких соединений: Спр. изд. М.: Металлургия, 1986. Kosolapova T.Ya. (ed.). Properties, production and application of refractory compounds: Ref. ed. Moscow: Metallurgiya, 1986 (In Russ.).

21. Пахомов В.С. Коррозия металлов и сплавов: Справочник. М.: Наука и технологии, 2013. Pakhomov V.S. Corrosion of metals and alloys: A reference book. Moscow: Nauka i tekhnologii, 2013 (In Russ.).

22. Никольский Б.П. (ред.) Справочник химика. Основные свойства неорганических и органических соединений. Изд. 2-е. Л.: Химия, 1964. Nikolsky B.P. (Ed.) Handbook of the chemist. Main properties of inorganic and organic compounds. Leningrad: Khimiya, 1964 (In Russ.).

23. Жиляев В.А. Взаимосвязь состава, структуры и химических свойств тугоплавких фаз внедрения. Ч.II. Природа химической и электрохимической активности тугоплавких фаз внедрения в минеральных кислотах. Вестник ПНИПУ. Машиностроение. Материаловедение. 2012. Т. 14. No. 4. С. 61—72. Zhilyaev V.A. Interrelation of composition, structure and chemical properties of refractory implantation phases. Part II. The nature of the chemical and electrochemical activity of refractory interstitial phases in mineral acids. Vestnik PNIPU. Mashinostroenie. Materialovedenie. 2012. Vol. 14. No. 4. P. 61—72 (In Russ.).


Review

For citations:


Ignatieva T.I., Tarasov A.G., Semenova V.N., Studenikin I.A., Karozina Yu.A. Yu.A. Investigation of TiB2–TiN eutectic alloy obtained by combustion synthesis for chemical resistance in mineral acid media. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2019;(3):42-48. (In Russ.) https://doi.org/10.17073/1997-308X-2019-3-42-48

Views: 793


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)