Structural-technological model of wear for surfacing materials based on Fe–Cr–Ni–Мо and Fe–Co–Ni–Мо
https://doi.org/10.17073/1997-308X-2019-3-57-64
Abstract
The paper presents the results obtained when studying the structure of surfacing materials based on martensitic-aging Fe–Cr– Ni–Мо и Fe–Co–Ni–Мо alloys obtained by plasma powder surfacing. Silicon was chosen as an alloying element, which made it possible to significantly improve the technical and economic performance of martensitic-aging materials. A comparison of martensitic-aging steels with high-carbon steels showed that the former provide an advantage as a wear-resistant material due to their increased resistance to crack propagation. Microscopic analysis, X-ray diffraction analysis and electron microprobe analysis were used for the research. Surfacing materials were tested for wear and internal friction. Silicon oxide particles and chromium and molybdene silicides involved in the process of alloying material strengthening were found during the experiments. Silicide particle density was determined that varies depending on the amount of silicon in the material. The effect of the silicon content on the material hardness was considered. The data obtained on the structure and phase composition of Fe–Cr–Ni–Мо и Fe–Co–Ni–Мо compounds doped with silicon in both the initial and aged states made it possible to suggest a structural-physical model of their hardening in the course of aging. Results of the experiments showed that the heat treatment process actively influences the wear rate and weight wear reducing their values that is typical for both Fe–Cr–Ni–Мо and Fe–Co–Ni–Мо alloys. Based on these data, a structural-technological model of wear was obtained for the surfacing materials studied.
About the Authors
N. B. FomichevaRussian Federation
Cand. Sci. (Tech.), Assistant prof., Department of metal physics and materials science
300000, Tula, pr. Leninа, 84
L. M. Nechaev
Russian Federation
Cand. Sci. (Phys.-Math.), Prof., Department of theoretical mechanics
E. V. Markova
Russian Federation
Cand. Sci. (Tech.), Assistant prof., Department of engineering technology
G. V. Serzhantova
Russian Federation
Cand. Sci. (Tech.), Assistant prof., Department of metal physics and materials science
References
1. Апаев Б.А., Мадянов С.А., Вороненко Б.Н. Исследование химической микронеоднородности твердых растворов хрома и никеля в железе. Физика и электроника твердого тела. 1981. Вып. IV. С. 64—70. Apaev B.A., Madyanov S.A., Voronenko B.N. Investigation of chemical microenvironement of solid solutions of chromium and nickel in iron. Fizika i elektronika tverdogo tela. 1981. Vol. IV. P. 64—70 (In Russ.).
2. Новиков И.И. Теория термической обработки. М.: Металлургия, 1986. Novikov I.I. Theory of heat treatment. Moscow: Metallurgiya, 1986 (In Russ.).
3. Ondracek G. Zurquantitativen gefьge-feldeigenschaftskorrelation mehrhasiger werkstoffe teil I, II, III. Metall. 1982. Vol. 36. No. 12. P. 1288—1290.
4. Шлямнев А.П., Филиппов Г.А., Науменко В.В. Свойства аустенитных хромоникелевых сталей, легированных азотом и кремнием. МиТОМ. 2011. No.2. С. 22—26. Shlyamnev A.P., Filippov G.A., Naumenko V.V. Properties of austenitic chromium-nickel steels alloyed with nitrogen and silicon. Metallovedenie i termicheskaya obrabotka metallov. 2011. No.2. Р. 22—26 (In Russ.).
5. Фельдгандлер Э.Г., Савкина Л.Я. Влияние легирования на упрочнение мартенситно-стареющих сталей систем Fe—Cr—Ni и Fe—Cr—Co. МиТОМ. 1985. No. 9. С. 30—35. Feldgandler E.G., Savkina L.Ya. Influence of alloying on hardening of martensitic steels of Fe—Cr—Ni and Fe— Cr—Co systems. Metallovedenie i termicheskaya obrabotka metallov. 1985. No. 9. P. 30—35 (In Russ.).
6. Liujie Xu, Jiandong Xing, Shizhong Wei, Yongzhen Zhang, Rui Long. Study on relative wear resistance and wear stability of highspeed steel with high vanadium content. Wear. 2007. Vol. 262. P. 253—261.
7. Grachov S.V., Baras V.R. Thermomechanical treatment of age hardening austenitic steels. Ind. Heat. 1980. Vol. 47. No. 10. P. 20—23.
8. Тарасенко Л.В., Шалькевич А.Б. Фазовый состав и упрочнение сталей системы Fe—Cr—Ni—Co—Mo с мартенситно-аустенитной структурой. МиТОМ. 2007. No. 4. С. 32—37. Tarasenko L.V., Shalkevich A.B. Phase composition and hardening of steels of Fe—Cr—NiCo—Mo system with martensitic-austenitic structure. Metallovedenie i termicheskaya obrabotka metallov. 2007. No. 4. P. 32—37 (In Russ.).
9. Гладкий П.В., Переплетчиков Е.Ф., Рябцев И.А. Плазменная наплавка. Киев: Экотехнология, 2007. Gladkiy P.V., Perepletchikov E.F., Ryabtsev I.A. Plasma surfacing. Кiev: Eкоtekhnologiya, 2007 (In Russ.).
10. Zuchowski R.S. Culbertson R.P. Plasma arc weld surfacing. Weld. J. 1962. Vol. 41. No. 6. P. 548—555.
11. Pampillo C.A., Paxton H.W. The eff ect of reverted austenite on the mechanical properties and toughness of 12 Ni and 18 Ni mara ging steels. Metal. Trans. 1972. Vol. 3. No. 11. P. 2895— 2903.
12. Smars Е. Backstrom. Gas-metal-plasma arc welding, a new method for weld cladding. In: Exploiting Welding in Production Technology. Abington, 1975. Vol. 1. P. 179—187.
13. Swarf J.D. Plasma-MIG suited to cladding oil delivery system. Weld. Metal Fabric. 1982. Vol. 50. No. 10. P. 477—480.
14. Петрушин Г.Д. Температурные зависимости внутреннего трения и модуля Юнга чугуна. Вопросы металловедения и физики металлов. 1975. No. 2. C. 98—100. Petrushin G.D. Temperature dependences of internal friction and young’s modulus of cast iron. Voprosi metallovedeniya i fiziki metallov. 1975. No. 2. P. 98—100 (In Russ.).
15. Пантелеенко Ф.И., Ворошин Л.Г., Любецкий С.Н. Влияние структуры защитных покрытий на их износостойкость. Трение и износ. 1991. Т. 12. No. 2. С. 310— 314. Panteleenko F.I., Voroshin L.G., Lyubetskii S.N. The influence of the structure of protective coatings on their wear resistance. Trenie i iznos. 1991. Vol. 12. No. 2. Р. 310— 314 (In Russ.).
16. Bratberg J., Frisk K. An experimental and theoretical analysis of the phase equilibria in the Fe—Cr—V—C system. Metal. Mater. Trans. 2004. Vol. 35A. P. 3649— 3663.
17. Lavigne D., Have P.V.D., Maksymovwicz М. Automatic plasma ark welding. Joining Mater. 1988. Vol. 7. P. 19—25.
18. Grain E. The plasma ark process-rewiew. Weld. J. 1988. Vol. 2. P. 19—25.
19. Bouaifî В. Achutzscichten mit beanspruchungs gererechter Hartstoffeinlagerung. Schweiben und Schneiden. In: Vortrange der gleichnamigen Groben Schweibtechnischen Tagung in Essen. DVS 237. Dusserldorf, 2005. S. 332—337.
20. Kawabata Y., Nishimura T., Wakamiya T., Vamaoka Y. The effect of strength and work hardening characteristics on the head-ability of austenitic stainless steel wires. Iron and Steel Inst. Jap. 1975. Vol. 61. No. 8. Р. 2028—2037.
21. Wang L., Subramanian S.V., Liu C., Ma X. Studies on Nb microalloying of 13Cr super martensitic stainless steel. Miner., Met. Mater. Soc. ASM Int. 2012. Vol. 43A. Р. 4475— 4484.
22. Фомичева Н.Б., Нечаев Л.М., Маркова Е.В. Особенности влияния кремния на структуру наплавочных материалов. Чер. металлы. 2017. No. 12. С. 45—50. Fomicheva N.B., Nechaev L.M., Markova E.V. Effects of silicon on facing material structure. Chernie metalli. 2017. No. 12. P. 45—50 (In Russ.).
Review
For citations:
Fomicheva N.B., Nechaev L.M., Markova E.V., Serzhantova G.V. Structural-technological model of wear for surfacing materials based on Fe–Cr–Ni–Мо and Fe–Co–Ni–Мо. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2019;(3):57-64. (In Russ.) https://doi.org/10.17073/1997-308X-2019-3-57-64