Non-sensitizing Zr–O–N coatings for jewelry made of non-precious alloys
https://doi.org/10.17073/1997-308X-2019-3-65-72
Abstract
Recent decades jewelry manufacturers put into practice using of non-precious alloys in order to decrease the production costs. Nevertheless, the large number of customers has allergic (sensitizing) body reaction on jewelries. Applying of non-sensitizing coating is able to decrease negative influence of jewelry material on human body. One of the biologically inert materials toward to human body tissues is zirconium. In the present work we examined the zirconium-based coatings applied by magnetron sputtering. Eleven coating regimes of AISI 430 steel substrates by zirconium oxynitride were investigated. Coatings corrosion test in Hank’s solution, microhardness measurements, color performance in CIE 1976 L*a*b* and RGB color spaces were carried out. The coating width was 0.4–1.2 μm. It was established that coatings have microhardness 2.5–3.0 GPa and can simulate jewelries colors. Using energy dispersive X-ray spectroscopy, it was evaluated that coatings consist of Zr, N and O. We select the sputtering regimes which provides metallic type coatings with the high optical reflectivity in the energy range near the infrared part of spectrum (<1.7 eV) and has golden color with a high lightness. It was experimentally proved that coatings are not corroding in Hank’s solution. The allergy patch test of jewelry with zirconium oxynitride coating demonstrate a good result on respondents with sensitizing reaction to non-precious alloys jewelry. The obtained results allow us to recommend the application of a zirconium-based coating magnetron sputtering in manufacturing of the non-precious alloys jewelry.
About the Authors
V. E. BazhenovRussian Federation
Bazhenov V.E. – Cand. Sci. (Tech.), Assistant prof., Department of foundry technologies and material art working (FT&MAW)
119049, Moscow, Leninskii pr., 4
E. S. Khramchenkova
Russian Federation
Graduate student, Department of FT&MAW
A. V. Koltygin
Russian Federation
Cand. Sci. (Tech.), Assistant prof., Department of FT&MAW
S. V. Prishepov
Russian Federation
Engineer, Department of metallurgical processes computer-aided design technologies and systems
125993, Moscow, Volokolamskoe shosse, 4
I. V. Shkalei
Russian Federation
Shkalei I.V. – Engineer, Tribology laboratory
119526, Moscow, pr. Vernadskogo, 101-1
References
1. Siemund I., Mowitz M., Zimerson E., Bruze M., Hindsén M. Variation in aluminium patch test reactivity over time. Contact Dermatitis. 2017. Vol. 77. No. 5. P. 288—296.
2. McDougall S.A., Heath M.D., Kramer M.F., Skinner M.A. Analysis of aluminium in rat following administration of allergen immunotherapy using either aluminium or microcrystalline-tyrosine-based adjuvants. Bioanalysis. 2016. Vol. 8. No. 6. P. 547—556.
3. Jensen-Jarolim E. Aluminium in allergies and allergen immunotherapy. World Allergy Organization Journal. 2015. Vol. 8. P. 1—7.
4. Yoshihisa Y., Shimizu T. Metal allergy and systemic contact dermatitis: An overview. Derm. Res. Pract. 2012. Vol. 2012. No. 749561.
5. Uter W., Schmid M., Schmidt O., Bock C., Wolter J. Cobalt release from earrings and piercing jewellery — analytical results of a German survey. Contact Dermatitis. 2014. Vol. 70. No. 6. P. 369—375.
6. Lucchetti M.C., Fratto G., Valeriani F., De Vittori E., Giampaoli S., Papetti P., Spica V.R., Manzon L. Cobalt-chromium alloys in dentistry: An evaluation of metal ion release. J. Prosthetic Dentistry. 2015. Vol. 114. No. 4. P. 602—608.
7. Hedberg Y.S., Erfani B., Matura M., Lidén C. Chromium (III) release from chromium-tanned leather elicits allergic contact dermatitis: A use test study. Contact Dermatitis. 2018. Vol. 78. No. 5. P. 307—314.
8. Bregnbak D., Johansen J.D., Jellesen M.S., Zachariae C., Menné T., Thyssen J.P. Chromium allergy and dermatitis: prevalence and main findings. Contact Dermatitis. 2015. Vol. 73. No. 5. P. 261—280.
9. Gabe D.R., Larson C. Electrodeposited nickel (and other metal) allergenic effects: some further thoughts. Trans. IMF. 2017. Vol. 95. No. 2. P. 71—72.
10. Schnuch A., Wolter J., Geier J., Uter W. Nickel allergy is still frequent in young German females — probably because of insufficient protection from nickel-releasing objects. Contact Dermatitis. 2011. Vol. 64. No. 3. P. 142—150.
11. Thyssen J.P., Menné T., Johansen J.D. Nickel release from inexpensive jewelry and hair clasps purchased in an EU country — Are consumers sufficiently protected from nickel exposure? Sci. Total Environment. 2009. Vol. 407. No. 20. P. 5315—5318.
12. Tillman C., Engfeldt M., Hindsén M., Bruze M. Usage test with palladium-coated earrings in patients with contact allergy to palladium and nickel. Contact Dermatitis. 2013. Vol. 69. No. 5. P. 288—295.
13. Setiyorini Y., Pintowantoro S. Biocompatibility improvement of NiTi orthodontic wire from various coatings. Adv. Mater. Res. 2013. Vol. 789. P. 225—231.
14. Okamoto H., Tsutsumi Y., Watanabe M., Yamakage K., Ashida M., Chen P., Doi H., Miura H., Matsumura M., Hanawa T. Evaluation of release and accumulation of metal ions from titanium and nickel by accelerated dissolution test in simulated body environments. Electrochemistry. 2015. Vol. 83. No. 12. P. 1048-1052.
15. Chen J.K., Lampel H.P. Gold contact allergy: Clues and controversies. Dermatitis. 2015. Vol. 26. No. 2. P. 69—77.
16. Asri R.I.M., Harun W.S.W., Samykano M., Lah N.A.C., Ghani S.A.C., Tarlochan F., Raza M.R. Corrosion and surface modification on biocompatible metals: A review. Mater. Sci. Eng. C. 2017. Vol. 77. P. 1261—1274.
17. Sella C., Martin J.C., Lecoeur J., Bellier J.P., Harmand M.F., Naji A., Davidas J.P., Le Chanu A. Corrosion protection of metal implants by hard biocompatible ceramic coatings deposited by radio-frequency sputtering. Clinical Mater. 1990. Vol. 5. No. 2-4. P. 297—307.
18. Cionca N., Hashim D., Mombelli A. Zirconia dental implants: where are we now, and where are we heading? Periodontology 2000. 2017. Vol. 73. No. 1. P. 241—258.
19. Gutmanas E.Y., Gotman I. Protective coatings on medical implants by reactive diffusion. AIP Conf. Proc. 2014. Vol. 1623. P. 203—208.
20. Chen C., Kleverlaan C.J., Feilzer A.J. Effect of an experimental zirconia-silica coating technique on micro tensile bond strength of zirconia in different priming conditions. Dental Mater. 2012. Vol. 28. No. 8. P. 127—134.
21. da Silva Oliveira C.I., Martinez-Martinez D., Cunha L., Rodrigues M.S., Borges J., Lopes C., Alves E., Barradas N.P., Apreutesei M. Zr—O—N coatings for decorative purposes: Study of the system stability by exploration of the deposition parameter space. Surf. Coat. Technol. 2018. Vol. 343. P. 30—37.
22. Cengiz S., Azakli Y., Tarakci M., Stanciu L., Gencer Y. Microarc oxidation discharge types and bio properties of the coating synthesized on zirconium. Mater. Sci. Eng. C. 2017. Vol. 77. P. 374—383.
23. Durdu S., Aktug S.L. , Aktas S., Yalcin E., Cavusoglu K., Altinkok A., Usta M. Characterization and in vitro properties of anti-bacterial Ag-based bioceramic coatings formed on zirconium by micro arc oxidation and thermal evaporation. Surf. Coat. Technol. 2017. Vol. 331. P. 107—115.
24. Ivanova A.A., Surmeneva M.A., Shugurov V.V., Koval N.N., Shulepov I.A., Surmenev R.A. Physical and mechanical properties of Ti—Zr coatings fabricated via ion-assisted arc-plasma deposition. Vacuum. 2018. Vol. 149. P. 129—133.
25. Лысенок Л.Н. Биоматериаловедение: Вклад в прогресс современных медицинских технологий. Клеточная трансплантология и клеточная инженерия. 2005. No. 2. C. 56—61. Lysenok L.N. Biomaterial science: Contribution to the progress of modern medical technologies. Kletochnaya transplantologiya i kletochnaya inzheneriya. 2005. No. 2. P. 56—61 (In Russ.).
26. Thomas P., Weik T., Roider G., Summer B., Thomsen M. Influence of surface coating on metal ion release: evaluation in patients with metal allergy. Orthopedics. 2016. Vol. 39. No. 3. P. 24—30.
27. Carvalho P., Borges J., Rodrigues M.S., Barradas N.P., Alves E., Espinós J.P., González-Elipe A.R., Cunha L., Marques L., Vasilevskiy M.I., Vaz F. Optical properties of zirconium oxynitride films: The effect of composition, electronic and crystalline structures. Appl. Surf. Sci. 2015. Vol. 358B. P. 660—669.
28. Duan Z., Yang H., Kano S., Murakami K., Satoh Y., Takeda Y., Abe H. Oxidation and electrochemical behaviors of Al2O3 and ZrO2 coatings on Zircaloy-2 cladding by thermal spraying. Surf. Coat. Technol. 2018. Vol. 334. P. 319—327.
29. Patel S.N., Jayaram V., Banerjee D. Thick coatings of porous zirconia by anodization of zirconium in an organic electrolyte. Surf. Coat. Technol. 2017. Vol. 323. P. 2—9.
30. Cubillos G.I., Mendoza M.E., Alfonso J.E., Blanco G., Bethencourt M. Chemical composition and microstructure of zirconium oxynitride thin layers from the surface to the substrate-coating interface. Mater. Characterization. 2017. Vol. 131. P. 450—458.
31. Carvalho P., Vaz F., Rebouta L., Carvalho S., Cunha L., Goudeau Ph., Rivière J.P., Alves E., Cavaleiro A. Structural stability of decorative ZrNxOy thin films. Surf. Coat. Technol. 2005. Vol. 200. No. 1-4. P. 748—752.
Review
For citations:
Bazhenov V.E., Khramchenkova E.S., Koltygin A.V., Prishepov S.V., Shkalei I.V. Non-sensitizing Zr–O–N coatings for jewelry made of non-precious alloys. Powder Metallurgy аnd Functional Coatings. 2019;(3):65-72. (In Russ.) https://doi.org/10.17073/1997-308X-2019-3-65-72