Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Production of cast materials based on Cr2AlC MAX phase by SHS metallurgy using coupled chemical reaction

https://doi.org/10.17073/1997-308X-2019-4-14-20

Abstract

It is known  that  materials based on MAX phases have great potential for aerospace, automotive and  industrial applications due to a unique combination of features offered by both  metals and  ceramics with high mechanical, chemical, thermal and  electrical properties. This paper provides the results obtained by the SHS metallurgy of Cr–Al–C materials with different ratios between the MAX-Cr2AlC phase, carbides and  chromium aluminides. Experiments were carried out in a 3-liter SHS reactor at an initial pressure of inert gas (Ar) of 5 MPa.  The synthesis process was  carried out based on coupled chemical reactions: weakly exothermic (heat acceptor) –  Cr2O3/3Al/C and  strongly exothermic (heat donor) –  3CaO2/2Al. The obtained experimental results have a  good correlation with previously performed thermodynamic calculations. It is shown that varying the composition of the initial mixtures can significantly influence the calculated and  experimental synthesis parameters as well as the phase composition and  microstructure of final products. The paper establishes optimal conditions for material synthesis providing a maximum output of the Cr2AlC MAX phase in the  ingot  composition. A determining factor influencing the  Cr2AlC content in the final product is the time of liquid phase presence under synthesis conditions. It is shown that  the maximum content of the Cr2AlC MAX phase and  the target product yield is achieved at the highly exothermic additive (3CaO2/2Al) content of 30 % in the initial mixture.

About the Authors

V. A. Gorshkov
Merzhanov Institute of Structural Macrokinetics and Materials Science of Russian Academy of Sciences (ISMAN)
Russian Federation

Dr. Sci. (Tech.), leading researcher of Laboratory «SHS melts and  cast materials», Merzhanov Institute of Structural Macrokinetics and  Materials Science of Russian Academy of Sciences (ISMAN).

142432, Moscow region, Chernogolovka, Acad. Osip’yan str., 8.



P. A. Miloserdov
Merzhanov Institute of Structural Macrokinetics and Materials Science of Russian Academy of Sciences (ISMAN)
Russian Federation

Cand. Sci. (Tech.), senior researcher of Laboratory «SHS melts and  cast materials», ISMAN.

142432, Moscow region, Chernogolovka, Acad. Osip’yan str., 8.



N. Yu. Khomenko
Merzhanov Institute of Structural Macrokinetics and Materials Science of Russian Academy of Sciences (ISMAN)
Russian Federation

Junior researcher of Laboratory of X-ray investigation, ISMAN.

142432, Moscow region, Chernogolovka, Acad. Osip’yan str., 8.



N. V. Sachkova
Merzhanov Institute of Structural Macrokinetics and Materials Science of Russian Academy of Sciences (ISMAN)
Russian Federation

Researcher of Laboratory of materials science, ISMAN.

142432, Moscow region, Chernogolovka, Acad. Osip’yan str., 8.



References

1. Barsoum M.W. MA X phases: Properties of machinable ternary carbides and nitrides. Weinheim: Wiley-VCH Verlag GmbH, 2013.

2. Radovic M., Barsoum M.W. MA X phases: Bridging the gap between metals and ceramics. Am. Ceram. Soc. Bull. 2013. Vol. 92. No. 3. P. 20—27.

3. Barsoum M.W., Radovic M. Elastic and mechanical properties of the MA X phases. Annu. Rev. Mater. Res. 2011. Vol. 41. No. 1. P. 195—227.

4. Barsoum M., El-Raghy T. The MA X phases: Unique new carbide and nitride materials. Am. Sci. 2001. Vol. 89. No. 4. P. 336—345.

5. Poon B., Ponson L., Zhao J., Ravichandran G. Damage accumulation and hysteretic behavior of MA X phase materials. J. Mech. Phys. Solids. 2011. Vol. 59. No. 10. P. 2238—2257.

6. Atikur Rahman M. Study on structural, electronic, optical and mechanical properties of MA X phase compounds and applications: Review. Am. J. Mod. Phys. 2015. Vol. 4. No. 2. P. 75—91.

7. Li H., Li S., Zhou Y. Cyclic thermal shock behaviour of a Cr2AlC ceramic. Mater. Sci. Eng. A. 2014. Vol. 607. P. 525—529.

8. Tian W.B., Wang P.L., Kan Y.M., Zhang G.J., Li Y.X., Yan D.S. Phase formation sequence of Cr2AlC ceramics starting from Cr—Al—C powders. Mater. Sci. Eng. A. 2007. Vol. 443. No. 1—2. P. 229—234.

9. Xiao L.O., Li S.B., Song G., Sloof W.G. Synthesis and thermal stability of Cr2AlC. J. Eur. Ceram. Soc. 2011. Vol. 31. No. 8. P. 1497—1502.

10. Duan X., Shen L., Jia D., Zhou Y., van der Zwaag S., Sloof W.G. Synthesis of high-purity, isotropic or textured Cr2AlC bulk ceramics by spark plasma sintering of pressure-less sintered powders. J. Eur. Ceram. Soc. 2015. Vol. 35. No. 5. P. 1393—1400.

11. Panigrahi B.B., Chu M.C., Kim Y. Il, Cho S.J., Gracio J.J. Reaction synthesis and pressureless sintering of Cr2AlC powder. J. Am. Ceram. Soc. 2010. Vol. 93. No. 6. P. 1530—1533.

12. Tian W., Vanmeensel K., Wang P., Zhang G., Li Y., Vleugels J., Van der Biest O. Synthesis and characterization of Cr2AlC ceramics prepared by spark plasma sintering. Mater. Lett. 2007. Vol. 61. No. 22. P. 4442—4445.

13. Merzhanov A.G. The chemistry of self-propagating high-temperature synthesis. J. Mater. Chem. 2004. Vol. 14. No. 12. P. 1779—1786.

14. Levashov E.A., Mukasyan A.S., Rogachev A.S., Shtansky D.V. Self-propagating high-temperature synthesis of advanced materials and coatings. Int. Mater. Rev. 2017. Vol. 62. No. 4. P. 203—239.

15. Łopaciński M., Puszynski J., Lis J. Synthesis of ternary titanium aluminum carbides using self-propagating high-temperature synthesis technique. J. Am. Ceram. Soc. 2001. Vol. 84. No. 12. P. 3051—3053.

16. Zhu C.-C., Zhu J., Wu H., Lin H. Synthesis of Ti3AlC2 by SHS and thermodynamic calculation based on first principles. Rare Met. 2015. Vol. 34. No. 2. P. 107—110.

17. Konovalikhin S.V., Kovalev D.Y., Sytschev A.E., Vadchenko S.G., Shchukin A.S. Formation of nanolaminate structures in the Ti—Si—C system: A crystallochemical study. Int. J. SHS. 2014. Vol. 23. No. 4. P. 217—221.

18. Yukhvid V.I. High-temperature liquid-phase SHS processes: New trends and tasks. Izv. vuzov. Tsvetnaya metallurgiya. 2006. Vol. 5. P. 62—78 (In Russ.).

19. Levashov E.A., Rogachev A.S., Kurbatkina V.V., Maksimov Yu.M., Yukhvid V.I. Promising materials and technologies of self-propagating high-temperature synthesis. Moscow: MISIS, 2011 (In Russ.).

20. Gorshkov V.A., Miloserdov P.A., Luginina M.A., Sachkova N.V., Belikova A.F. High-temperature synthesis of a cast material with a maximum content of the MA X phase Cr2AlC. Inorg. Mater. 2017. Vol. 53. No. 3. P. 271—277.

21. Gorshkov V.A., Miloserdov P.A., Sachkova N.V., Luginina M.A., Yukhvid V.I. SHS Metallurgy of Cr2AlC MA X Phase-based cast materials. Russ. J. Non-Ferr. Met. 2018. Vol. 59. No. 5. P. 570—575.

22. Gorshkov V.A., Miloserdov P.A., Karpov A.V., Shchukin A.S., Sytschev A.E. Investigation of the composition and properties of a Cr2AlC MA X phase-based material prepared by metallothermic SHS. Phys. Met. Metallogr. 2019. Vol. 120. No. 5. P. 471—475.

23. Merzhanov A.G., Khaikin B.I. Theory of combustion waves in homogeneous media. Prog. Energy Combust. Sci. 1988. Vol. 14. No. 1. P. 1—98.

24. Merzhanov A.G. Thermally coupled processes of selfpropagating high-temperature synthesis. Dokl. Phys. Chem. 2010. Vol. 434. No. 2. P. 159—162.

25. Shiryaev A. Thermodynamics of SHS processes: A n advanced approach. Int. J. SHS. 1995. Vol. 4. No. 4. P. 351—362.


Review

For citations:


Gorshkov V.A., Miloserdov P.A., Khomenko N.Yu., Sachkova N.V. Production of cast materials based on Cr2AlC MAX phase by SHS metallurgy using coupled chemical reaction. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2019;(4):14-20. (In Russ.) https://doi.org/10.17073/1997-308X-2019-4-14-20

Views: 659


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)