Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Preparation and study of Ni–Al–O system cermet composites with a small addition of MgAl2O4 nanoparticles

https://doi.org/10.17073/1997-308X-2019-4-30-37

Abstract

The paper presents the  results of obtaining and  studying the  structure and  properties of cermets based on powders of aluminum oxide and  nickel-aluminum alloy doped with 0.1  wt.% of aluminum-magnesium spinel nanoparticles sintered by the electrospark method on the FCT-HP D 25 unit in argon at t = 1470°C for 30 min. The results of the NiAl–65Al2O3 charge TG and  DSC analysis at up to 1300°C are presented. It is found that MgAl2O4 spinel in the form of individual nanoparticles (60 nm) or aggregates (less than 700  nm) are present along the grain boundaries of the composite. Internal friction studies at t = 20÷900°C and  high-temperature X-ray phase analysis at t = 700,  800  and  900°C were carried out to describe strength properties degradation mechanisms of the developed materials. The effect of nanoparticles on the internal friction of the composite within Δt = 20÷900°C in the NiAl–65Al2O3–0.1MgAl2O4 system is shown. Potential mechanisms for cermet strength properties degradation with increasing temperature are discussed. It is suggested that the appearance of extrema on internal friction curves at high temperatures can be caused by shifted phase boundaries of intermetallic compounds and  the oxide component due to different coefficients of thermal expansion (CTE).

A positive effect of doping with spinel nanoparticles on the short-term heat resistance of cermets at t = 750°C is found. The study of short-term heat resistance at t = 750°C showed that  the sample with nanoparticles is more stable than  the unmodified sample, which can be associated with the influence of interfacial hardening zones formed around nanoparticles according to the Obraztsov– Lurie–Belov theory and  a number of studies carried out on metal matrices.

About the Authors

L. E. Agureev
Keldysh Center
Russian Federation

Cand. Sci. (Tech.), scientific researcher of the Nanotechnology Department, State Research Center «Keldysh Center».

125438, Moscow, Onezhskaya str., 8.



V. I. Kostikov
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Dr. Sci. (Tech.), prof. of the Department of powder metallurgy and  functional coatings (PM&FC) of National University of Science and  Technology (NUST) «MISIS».

119049, Moscow, Leninskii pr., 4.



I. N. Laptev
Keldysh Center
Russian Federation

Engineer of the Nanotechnology Department, State Research Center «Keldysh Center».

125438, Moscow, Onezhskaya str., 8.



A. I. Kanushkin
Keldysh Center
Russian Federation

Engineer of the Nanotechnology Department, State Research Center «Keldysh Center».

125438, Moscow, Onezhskaya str., 8.



Zh. V. Eremeeva
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Dr. Sci. (Tech.), associate prof. of the Department of PM&FC of NUST «MISIS».

119049, Moscow, Leninskii pr., 4.



A. V. Ivanov
Keldysh Center
Russian Federation

Engineer of the Nanotechnology Department, State Research Center «Keldysh Center».

125438, Moscow, Onezhskaya str., 8.



A. A. Ashmarin
Keldysh Center
Russian Federation

Cand. Sci. (Tech.), engineer of the Nanotechnology Department, State Research Center «Keldysh Center».

125438, Moscow, Onezhskaya str., 8.



E. A. Vysotina
Keldysh Center
Russian Federation

Engineer of the Nanotechnology Department, State Research Center «Keldysh Center».

125438, Moscow, Onezhskaya str., 8.



B. S. Ivanov
Keldysh Center
Russian Federation

Engineer of the Nanotechnology Department, State Research Center «Keldysh Center».

125438, Moscow, Onezhskaya str., 8.



References

1. Karayannis V.G., Moutsatsou A.K. Synthesis and characterization of nickel-alumina composites from recycled nickel powder. Adv. Mater. Sci. Eng. 2012. Vol. 2012. P. 1—9. DOI: dx.doi.org/10.1155/2012/395612.

2. Mileiko S.T. Oxide-fibre/Ni-based matrix composites— III: a creep model and analysis of experimental data. Compos. Sci. Technol. 2002. Vol. 62. P. 195—204. DOI: dx.doi.org/10.1016/S0266-3538(01)00162-2.

3. Sánchez-Herencia A.J., Hernández N., Moreno R. Fracture behaviour of pressureless sintered nickel-reinforced alumina composites. Key Eng. Mater. 2005. Vol. 290. P. 324—327.

4. Burkovskaya N.P., Yefimochkin I.Yu., Sevostyanov N.V., Rodionov A.I. A composite material based on Al2O3 dispersion strengthened nickel aluminide. Inorg. Mater: Appl. Res. 2016. Vol. 7. No. 1. P. 91—96. DOI: dx.doi.org/10.1134/S2075113316010044.

5. Pham H.V., Maruoka D., Nanko M. Inf luences of Al2O3 grain size on high-temperature oxidation of nano-Ni/ Al2O3 composites. J. Asian Ceram. Soc. 2016. Vol. 4. No. 1. P. 120—123. DOI: dx.doi.org/10.1016/j.jascer.2016.01.003.

6. Emme E.M., Dryden H.L. Aeronautics and astronautics: An american chronology of science and technology in the exploration of space, 1915—1960. Washington DC: Literary Licensing, LLC, 2012. P. 49—63.

7. Bettis E.S., Cottrell W.B., Mann E.R., Meem J.L., Whitman G.D. The aircraft reactor experiment-operation. Nucl. Sci. Eng. 1957. Vol. 2. P. 841—853.

8. Ignatiev V., Zakirov R., Grebenkine K. Molten salts as possible fuel f luids for TRU fuelled systems: ISTC #1606 Approach. In: Actinide and fission product partitioning and transmutation: 6th Information Exchange Meeting (Madrid, Spain, 11—13 Dec. 2000). 2000. P. 841—851.

9. Ignatiev V., Surenkov A., Abalin S., Gnidoy I., Kulakov A., Uglov V. Nickel based alloys compatibility with fuel salts for molten salt reactor with thorium and uranium support. In: Structural materials for innovative nuclear systems (SMINS-3): Worshop Proc. (United States, Idaho National Laborator y, Idaho Falls, 7—10 Oct. 2013). Idaho Falls: Idaho National Laborator y, 2013. P. 71—80.

10. Aizenkol’b F. Advances in powder metallurgy. Moscow: Metallurgiya, 1969 (In Russ.).

11. Agureev L.E., Ivanov B.S., Kostikov V.I., Eremeeva Zh.V., Ageev E.V., Laptev I.N., Savushkina S.V., Rudshtein R.I., Barmin A.A., Kanushkin A.I., Ashmarin A.A. Development of aluminum composites alloyed with micropowders of copper or magnesium, with small additives of oxide nanoparticles. Izvestiya Jugo-Zapadnogo gosudarstvennogo universiteta. Ser. Tekhnika i tekhnologii. 2016. Vol. 20. No. 3. P. 9—20 (In Russ.).

12. Agureev L.E., Kostikov V.I., Eremeeva Zh.V., Ashmarin A.A., Rudshtein R.I. Development of aluminum composites with small additions of ceramic nanoparticles. Metallurgist. 2016. Vol. 60. No. 3—4. P. 447—455. DOI: dx.doi.org/10.1007/s11015-016-0312-9.

13. Chuvil’deev V.N. Nonequilibrium grain boundaries in metals. Theory and applications. Moscow: Fizmatlit, 2004 (In Russ.).

14. Taira S., Otani R. Theory of high temperature strength of materials. Мoscow: Metallurgiya, 1986 (In Russ.).

15. Ohji T., Hirano T., Nakahira A., Niihara K. Particle/Matrix interface and its role in creep inhibition in alumina-silicon carbide nanocomposites. J. Am. Ceram. Soc. 1996. No. 79. Р. 33—45. DOI: dx.doi.org/10.1111/j.1151-2916.1996.tb07877.x.

16. Grigorovich V.K., Sheftel’ E.N. Dispersion hardening of refractory metals. Moscow: Nauka, 1980 (In Russ.).

17. Gottshtain G. Physicochemical fundamentals of materials science. Moscow: BINOM. Laboratoriya znanii, 2009 (In Russ.).

18. Thompson A.W. Substructure strengthening mechanisms. Met. Trans. 1977. 8A. No. 6. P. 833—842. DOI: dx.doi.org/10.1007/BF02661564.

19. Firstov S.A., Lugovskoi Yu.F. Features of the inf luence of the microstructure on the strength of composite materials under static and cyclic loading. Elektronnaya mikroskopiya i prochnost’ materialov. 2008. No. 15. P. 83—88 (In Russ.).

20. Shved O.V., Mudry S.I., Kulyk Yu.O. High-temperature X-ray diffraction studies of Al—Ni—Hf ternary alloys. Phys. Chem. Solid State. 2017. Vol. 18. No. 3. P. 324—327. DOI: dx.doi.org/10.15330/pcss.18.3.324-327.

21. Blanter M.S., Golovin I.S., Neuhäuser H., Sinning H.-R. Internal friction in metallic materials: A Handbook. N.Y.: Springer-Verlag Berlin Heidelberg, 2007. DOI: dx.doi.org/10.1007/978-3-540-68758-0.

22. Schaller R., Benoit W. Internal friction associated with precipitation in Al—Ag alloys. In: Proc. 3-rd Europ. Conf. on IFUAS (University of Manchester, England, 18—20 July 1980). Manchester: Pergamon, 1980. P. 311—316.

23. Cava S., Tebcherani S.M., Souza L.A., Pianaro S.A., Paskocimas C.A., Longo E., Varela J.A. Structural characterization of phase transition of Al2O3 nanopowders obtained by polymeric precursor method. Mater. Chem. Phys. 2007. Vol. 103. P. 394—399. DOI: dx.doi.org/10.1016/j.matchemphys.2007.02.046.

24. Gutirrez G., Taga A., Johansson B. Thermal structure determination of γ-Al2O3. Phys. Rev. B. 2001. Vol. 65. P. 101—105. DOI: dx.doi.org/10.1103/PhysRevB.65.012101.

25. Blas L., Dutournie P., Dorge S., Josien L., Kehrli D., Lambert A. Thermal stability study of NiAl2O4 binders for chemical looping combustion application. Fuel. 2016. Vol. 182. P. 50—56. DOI: dx.doi.org/10.1016/j.fuel.2016.05.080.

26. Zygmuntowicz J., Wiecińska P., Miazga A., Konopka K. Characterization of composites containing NiAl2O4 spinel phase from Al2O3/NiO and Al2O3/Ni systems. J. Therm. Anal. Calorim. 2016. Vol. 125. No. 3. P. 1079—1086. DOI: dx.doi.org/10.1007/s10973-017-6232-5.

27. Nguyen K.N., Dang K.C. Synthesis, characterization and catalytic activity of CoAl2O4 and NiAl2O4 spinel — type oxides for NOx selective reduction. Adv. in Tech. of Mat. and Mat. Proc. J. (ATM). 2004. Vol. 6. No. 2. P. 336—343. DOI: dx.doi.org/10.2240/azojomo0129.

28. Sheludyak Yu.E., Kashporov L.Ja., Malinin L.A., Calkov V.N. Thermophysical properties of components of combustible systems. Мoscow: NPO Inform TEI, 1992 (In Russ.).

29. Kositsyn S.V., Kositsyna I.I. Phase and structural transformations in alloys based on nickel monoaluminide. Uspekhi fiziki metallov. 2008. Vol. 9. No. 2. P. 195—258. DOI: dx.doi.org/ 10.15407/ufm.09.02.195 (In Russ.).

30. Obraztsov I.F., Lur’e S.A., Belov P.A., Volkov-Bogorodskii D.B., Yanovskii Yu.G., Kochemasova E.I., Dudchenko A.A., Potupchik E.M., Shumova N.P. Fundamentals of the theory of an interphase layer. Mekhanika kompozitsionnykh materialov i konstruktsii. 2004. Vol. 10. No. 4. P. 596—612 (In Russ.).

31. Lurie S., Belov P., Solyaev Yu., Aifantis E.C. On one class of applied gradient models with simplified boundary problems. Mater. Phys. Mech. 2017. No. 32 (3). P. 353—369.

32. Agureev L.E., Kostikov V.I., Eremeeva Zh.V., Barmin A.A. Rizakhanov R.N. Ivanov B.S. Ashmarin A.A. Laptev I.N. Rudshtein R.I. Powder aluminum composites of Al—Cu system with micro-additions of oxide nanoparticles. Inorg. Mater. Appl. Res. 2016. Vol. 7. No. 6. P. 507—510. DOI: dx.doi.org/10.1134/S2075113316050026.

33. Kostikov V.I., Agureev L.E., Eremeeva Zh.V. Development of nanopar ticle-rein forced alumocomposites for rocket-space engineer ing. Russ. J. Non-Ferr. Met. 2015. No. 56 (3). P. 325—328. DOI: dx.doi.org/10.3103/S1067821215030104.

34. Lurie S., Volkov-Bogorodskiy D., Solyaev Y., Rizahanov R., Agureev L. Multiscale modelling of aluminium-based metal-matrix composites with oxide nanoinclusions. Comput. Mater. Sci. 2016. Vol. 116. P. 62—73. DOI: dx.doi.org/10.1016/j.commatsci.2015.12.034.


Review

For citations:


Agureev L.E., Kostikov V.I., Laptev I.N., Kanushkin A.I., Eremeeva Zh.V., Ivanov A.V., Ashmarin A.A., Vysotina E.A., Ivanov B.S. Preparation and study of Ni–Al–O system cermet composites with a small addition of MgAl2O4 nanoparticles. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2019;(4):30-37. (In Russ.) https://doi.org/10.17073/1997-308X-2019-4-30-37

Views: 2997


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)