Preview

Powder Metallurgy аnd Functional Coatings

Advanced search

Investigation of the possibility of Pr2Fe14B/α-Fe composite obtaining by Pr–Fe–B alloy oxidation in a fluidized bed jet mill

https://doi.org/10.17073/1997-308X-2019-4-38-43

Abstract

The paper presents the results of studies into the possibility of obtaining Pr2Fe14B/α-Fe composites by Pr–Fe–B alloy oxidation in a fluidized bed jet mill. It is shown that  Pr2Fe14B/α-Fe composites with high magnetic characteristics can  be obtained using the standard powder metallurgy technology supplemented by Pr–Fe–B alloy oxidation in a fluidized bed jet mill for rare earth hard magnetic materials. It is found that there is an increase in residual induction (Br) with a slight drop in the coercive force ( jHc) during the fine powder production according to the proposed technology in argon containing up to 0.2 vol.% of oxygen. This effect causes the  maximum  energy product (BH)max to  increase  by 5 %.  With  further increase  in  the oxygen concentration,  the PrxFe, high-praseodymium phase almost completely oxidizes. This leads to a sharp drop in the coercive force and, as a consequence, to a drop in (BH)max. α-Fe particles resulting from magnetic material oxidation form at the boundaries between the Pr2Fe14B phase grains. Maximum magnetic characteristics are achieved when α-Fe particles are separated from the main magnetic phase grains by thin layers of non-magnetic phases. This allows maintaining a high  coercive force jHc  for sintered hard magnetic material samples. The optimal thickness of α-Fe layers is 0.2–0.3 μm. α-Fe layers were significantly thicker (0.8 to 1.1 μm) for samples obtained at an oxygen content of 0.3 vol.%. As a result, the coercive force of samples reduced by almost 10 %, while other magnetic parameters (Br , (BH)max)  decreased by 3–7 %. Therefore, it is possible to change the thickness of the α-Fe phase layer formed in the Pr2Fe14B/α-Fe composite and  control its magnetic parameters by adjusting the oxygen content in the jet mill medium.

About the Authors

V. P. Tarasov
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Dr. Sci. (Tech.), prof., head of the Department of non-ferrous metals and  gold, National University of Science and  Technology (NUST) «MISIS».

119049, Moscow, Leninkii pr., 4.



O. N. Krivolapova
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Tech.), associate prof. of the Department of non-ferrous metals and  gold, NUST «MISIS».

119049, Moscow, Leninkii pr., 4.



A. V. Kutepov
JSC «Research and production association «Magneton»
Russian Federation

Deputy general director for science research of JSC  «Research and  production association «Magneton».

600026, Vladimir, Kuibysheva str., 26.



E. V. Gorelikov
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci (Ped.), deputy director of the Centre of engineering of industrial technology, NUST «MISIS».

119049, Moscow, Leninkii pr., 4.



References

1. Matsuura Y. Recent development of Nd—Fe—B sintered magnets and their applications. J. Magn. Magn. Mater. 2006. Vol. 303. P. 344—347.

2. Shumkin S.S., Prokofiev P.A., Semenov M.Yu. Manufacture of permanent magnets of hard magnetic alloys using rare earth metals. Metallurgist. 2019. No. 5. P. 37—42 (In Russ.).

3. Alymov M.I., Milyaev I.M., Yusupov V.S., Milyaev A.I. Nanocrystalline hard magnetic materials. Adv. Mater. Technol. 2017. No. 2. P. 10—18.

4. Gutfleisch O., Bollero A., Handstein A., Hinz D., Kirchner A., Yan A., Müller K.-H., Schultz L. Nanocrystalline high performance permanent magnets. J. Magn. Magn. Mater. 2002. Vol. 242—245. P. 1277—1283.

5. Wang C., Yan M., Zhang W.Y. Effects of Nb and Zr additions on crystallization behavior, microstructure and magnetic properties of melt-spun (Nd,Pr)2Fe14B/α-Fe alloys. J. Magn. Magn. Mater. 2006. Vol. 306. No. 2. P. 195—198.

6. Savchenko A.G., Menushenkov V.P., Plastinin A.Yu., Shchetinin I.V., Rafalskii A.I., Bordyuzhin I.G., Ryazantsev V.A., Verbetskii V.N. Phase composition and magnetic properties of nanocomposites Nd2Fe14B/α-Fe, obtained by mechanical fusion. Deformatsiya i razrushenie materialov. 2017. No. 10. P. 30—34 (In Russ.).

7. Sheng H., Zeng X., Jin C., Qian H. Microstructure and magnetic properties of directly quenched Nd2Fe14B/α-Fe nanocomposite materials at different temperatures. J. Central South Univ. 2014. Vol. 21. Iss. 4. Р. 1275—1278.

8. Li H., Li W., Zhang Y., Zhang X., Gunderov D.V. Phase evolution, microstructure and magnetic properties of bulk α-Fe/Nd2Fe14B nanocomposite magnets prepared by severe plastic deformation and thermal annealing. J. Alloys Compd. 2015. Vol. 651. P. 434—439.

9. Zeng X., Sheng H., Jin C., Qian H. Magnetic properties and microstructure of melt-spun Nd2Fe14B/α-Fe nanocomposite magnets with a perpendicular anisotropy. J. Magn. Magn. Mater. 2016. Vol. 401. P. 1155—1158.

10. Daisuke Ogawa, Kunihiro Koike, Shigemi Mizukami, Takamichi Miyazaki, Mikihiko Oogane, Yasuo Ando, Hiroaki Kato. Negative exchange coupling in Nd2Fe14B(100)/α-Fe interface. Appl. Phys. Lett. 2015. Vol. 107. P. 102406.

11. Praseodymium and neodymium-based nanocrystalline hard magnetic alloys. URL: https://www.cambridge.org/core/journals/mrs-online-proceedings-library-archive/article/praseodymium-and-neodymiumbased-nanocrystalline-hard-magnetic-alloys/FA6BBB993817B26F7B-051308C6ECB099 (дата обращения: 24.10.2019 г.)

12. Besley L., Garitaonandia J.S., Molotnikov A., Kishimoto H., Kato A., Davies C., Suzuki K. Low temperature texture development in Nd2Fe14B/α -Fe nanocomposite magnets via equal channel angular pressing. AIP Advances. 2018. Vol. 8. Iss. 5. P. 219—226.

13. Benabderrahmane C., Berteaud P. Nd2Fe14B and Pr2Fe14B magnets characterisation and modelling for cryogenic permanent magnet undulator applications. Nucl. Instrum. Methods Phys. Res. Sect. А. 2012. Vol. 669. P. 1—6.

14. Neznakhin D.S., Politova G.A., Ivanov L.A., Volegov A.S., Gorbunov D.S., Tereshina I.S., Kudrevatykh N.V. Low-temperature magnetic hysteresis in Nd(Pr)—Fe—B nanostr uctured alloys with Nd2Fe14B type main phase composition. Defect Diffus. Forum. 2018. Vol. 386. P. 125—130.

15. Tang W., Zhou S., Wang R., Graham C.D. An investigation of the Nd-rich phases of the Nd—Fe—B system. J. Appl. Phys. 1988. Vol. 64. No. 10. P. 5516—5518.

16. Hao Z., Zhang S., Bao D., Han X. Investigation of high coercivity Dy/Tb-free sintered NdFeB magnet microstructure and mass production. In: Proc. 24th Intern. workshop on rare earth and future permanent magnets and their applications (REPM 2016) (Darmstadt, Germany, 28 Aug. — 1 Sept. 2016). Р. 56—62.

17. Rybalka S.B., Goltsov V.A., Didus V.A., Fruchart D. Fundamentals of the HDDR treatment of Nd2Fe14B type alloys. J. Alloys Compd. 2003. Vol. 356—357. P. 390—394.

18. Kim Tae-Hoon, Kang Min-Chul, Lee Junggoo, Kwon Hae-Woong, Kim Dong, Yang Сheol-Woong. Crystallographic alignment of Fe2B and Nd2Fe14B for texture memory in hydrogenation—disproportionation—desorption—recombination-processed Nd—Fe—B powders. J. Alloys Compd. 2018. Vol. 732. P. 32—42.

19. Nagata Kh., Sagava M. Perfect the technology of obtaining sintered magnets. In: Materials science and metallurgy. Promising technologies and equipment: Mater. Russ.-Jap. sem. MISIS—ULVAC Inc., 2003. P. 105—113 (In Russ.).

20. Goll D., Seeger M., Kronmuller H. Magnetic and microstructural properties of nanocrystalline exchange coupled PrFeB permanent magnets. J. Magn. Magn. Mater. 1998. Vol. 185. P. 49—60.

21. Fan X.D., Tian N., You C.Y. Inf luence of Nd doping on the magnetic properties of Nd2Fe14B/α-Fe nanocomposite magnets. Mater. Sci. Forum. 2015. Vol. 809—810. P. 88—92.

22. Manta E., Cekić B., Ivanovski V., Umićević A., Ćirić K. Mössbauer spectroscopic analysis of (Nd,Pr,Dy)2(Fe,Co)14B/ α-Fe permanent magnetic nanocomposites. Powder Metall. Adv. Mater. 2018. Vol. 8. Р. 70—79.


Review

For citations:


Tarasov V.P., Krivolapova O.N., Kutepov A.V., Gorelikov E.V. Investigation of the possibility of Pr2Fe14B/α-Fe composite obtaining by Pr–Fe–B alloy oxidation in a fluidized bed jet mill. Powder Metallurgy аnd Functional Coatings. 2019;(4):38-43. (In Russ.) https://doi.org/10.17073/1997-308X-2019-4-38-43

Views: 729


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)