Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Kinetics of dielectric coating formation on iron powders to obtain soft magnetic composite materials

https://doi.org/10.17073/1997-308X-2019-4-44-54

Abstract

The paper justifies the significance and  effectiveness of silicate-containing inorganic coating usage as an electric insulator in the production of soft magnetic composite materials (SMCM) from iron powders. The study demonstrates the effect of sodium silicate (Na2O–SiO2) concentration in the water solution on the kinetics of dielectric coating formation on different iron powder grades, as well as on  their weight gain, average coating thickness, as well as physical and  process characteristics. It is experimentally established that  the influence of iron powder particle morphology and  surface tension coefficient at solid-liquid interface on the coating thickness can be assessed indirectly by the wettability indicators, in particular, by the contact angle. The features of SMCM interlayer boundary structure formation are described. Elemental mapping using the energy dispersive X-ray spectrometer shows that after sample pressing at 600 MPa and their subsequent heating within 400–600°C, the coating thickness changes and silicon is partially redistributed in the dielectric layer. This is determined by the fact that silicon featuring higher oxophilicity than  iron actively reacts with oxygen adsorbed on the iron particle surface and/or reduces iron oxides forming SiO2 in the form of a dense film, which on the one hand protects iron particles from  oxidation, and  on the other hand forms a dielectric layer in the zone of iron particle contact that  affects specific magnetic losses. It is determined that  the distinctive feature of coated iron powder compaction is the structural deformation predominance during pressing since the coating reduces the internal friction coefficient. It is shown that according to its magnetic characteristics, the developed SMCM meets essential contemporary requirements for soft magnetic composite materials.

About the Authors

B. G. Gasanov
Platov South Russian State Polytechnic University (Novocherkassk Polytechnic Institute) (NPI)
Russian Federation

Dr. Sci. (Tech.), prof. of the Department «Automobiles and  transport-technological complexes», Platov South Russian State Polytechnic University (Novocherkassk Polytechnic Institute) (NPI).

346428, Rostov region, Novocherkassk, Prosveshcheniya str., 132.



V. G. Tamadaev
Platov South Russian State Polytechnic University (Novocherkassk Polytechnic Institute) (NPI)
Russian Federation

Cand. Sci. (Tech.), associate prof., head of the Department «Engineering technology, technological machines and  equipment», Platov South Russian State Polytechnic University (NPI).

346428, Rostov region, Novocherkassk, Prosveshcheniya str., 132.



V. O. Bogachev
LLC «Kriotech»
Russian Federation

Engineer of LLC «Kriotech».

346410, Rostov region, Novocherkassk, Komitetskaya str., 48.



E. R. Makhmudova
Platov South Russian State Polytechnic University (Novocherkassk Polytechnic Institute) (NPI)
Russian Federation

Graduate student of the Department «International logistics systems and  complexes», Platov South Russian State Polytechnic University (NPI).

346428, Rostov region, Novocherkassk, Prosveshcheniya str., 132.



References

1. Troitskii V.A., Rolik A.I., Yakovlev A.I. Magnetodielectric materials in power electronics. Kiev: Tekhnika, 1983 (In Russ.).

2. Enescu E., Lungu P., Marinescu S., Dragoi P. The effect of processing conditions on magnetic and electric properties of composite materials used in nonconventional magnetic circuits. J. Optoelectr. Adv. Mater. 2006. Vol. 8. No. 2. P. 745—748.

3. Magnetic materials and their characteristics. URL:https://coefs.uncc.edu/mnoras/files/2013/03/Transformer-and-Inductor-Design-Handbook_Chapter_2.pdf (accessed: 17.08.2019).

4. Vlasova O.V., Panasyuk O.A., Minitskii A.V., Apininskaya L.M., Vergeles N.M., Zatovskii V.G., Gripachevskii A.N., Kurovskii V.Ya. Powder magnetic materials for electrical industry. Elektricheskie kontakty i elektrody. 2012. No. 11. P. 101—107 (In Russ.).

5. Scorman B., Zhou E., Yansson P. Soft magnetic composite materials. Pat. 2389099 (RF). 2010 (In Russ.).

6. Ritso A.E., Letman V.Ya., Setmar R.A., Laansoo A.A. Isolating particles method inf luence on the characteristics of soft magnetic composite materials. Trudy Tallinskogo polytechnicheskogo instituta. 1984. No. 506. P. 22—26 (In Russ.).

7. Yansson P., Larsson L.-O. Phosphate coated powder and its manufacturing method: Pat. 2176577(RF). 2001 (In Russ.).

8. Zhou Ye. The effect of manufacturing processes on the properties of multi-layer coated SMC components.URL:https://www.epma.com/publications/euro-pm-proceedings/product/ep16-3294440 (accessed: 17.08.2019).

9. Koritskii Yu.V., Pasynkov V.V., Tareev B.M. Handbook of electrical materials. Leningrad: Energoatomizdat, 1988 (In Russ.).

10. GOST 23618-79. Products made from ferrites and magnetodielectric materials. Terms and definitions (In Russ.).

11. Kekalo I.B., Samarin B.A. Physical metallurgy of precision alloys. alloys with special magnetic properties. Moscow: Metallurgiya, 1989 (In Russ.).

12. Kvist S.Å. Magnetic properties of Höganäs PASC powders. Höganäs PM Powder Information No. PM 75-10. 1975. Р. 35—38.

13. Deepak Bhalla, Singh D.K., Swati Singh, Dipti Seth. Material processing technology for soft ferrites manufacturing. URL:http://article.sapub.org/pdf/10.5923.j.materials.20120206.01.pdf (accessed: 17.08.2019).

14. Tadayuki Tsutsui. Recent technology of powder metallurgy and applications. URL:https://www.hitachi-chem.co.jp/english/report/054/54_sou2.pdf (accessed: 17.08.2019).

15. Francis G. Hanejko, Howard G. Rutz, Christopher G. Oliver. Effects of processing and materials on soft magnetic performance of powder metallurgy parts. URL:https://www.gknpm.com/globalassets/downloads/hoeganaes/technical-library/technical-papers/test-papers/19.-effects-of-processing-and-materials-on-soft-magnetic-performance-of-powder-metallurgy-parts.pdf (accessed: 17.08.2019).

16. Takuya Takashita, Naomichi Nakamura, Yukiko Ozaki. Influence of microstructure on hysteresis loss of pure iron powder core. URL:https://www.epma.com/publications/euro-pm-proceedings/product/ep16-3292881 (accessed: 17.08.2019).

17. Satomi Sato, Hirofumi Hojo, Hiroyuki Mitani, Hironori Suzuki. Inf luence of heat treatment temperature on core loss of iron soft magnetic composite cores, for low frequency applications. URL:https://www.epma.com/publications/euro-pm-proceedings/product/ep16-3292842 (accessed: 17.08.2019).

18. Tatsuya Saito, Hijiri Tsuruta, Asako Watanabe, Tomoyuki Ueno, Koji Yamada. Influence of the surficial iron-oxide of pure-iron-based soft magnetic powder cores on the magnetic properties. URL:https://www.epma.com/publications/euro-pm-proceedings/product/ep16-3292915 (accessed: 17.08.2019).

19. Shokrollahi H., Janghorban K. Soft magnetic composite materials (SMCs). J. Mater. Process. Technol. 2007. Vol. 189. P. 1—12.

20. Kalathur S. Narasimhan, Shelton Clisby, Francis G. Hanejko. Soft magnetic insulated iron powder in electromagnetic applications. URL:https://www.epma.com/publications/euro-pm-proceedings/product/world-pm2010-pm-functional-materials (accessed: 17.08.2019).

21. Dougan M.J. High Performance sintered soft magnetic materials. URL:https://www.epma.com/publications/euro-pm-proceedings/product/world-pm2010-pm-functional-materials (accessed: 17.08.2019).

22. YouGuang Guo, Jian Guo Zhu. Application of soft magnetic composite materials in electrical machines: A review. URL:https://opus.lib.uts.edu.au/bitstream/10453/4194/3/2006005080.pdf (accessed: 17.08.2019).

23. Dorofeev Yu.G., Mikhailov V.V., Babets A.V., Krivoshchekov V.O. Magnetic soft composite material: Pat. 2469430(RF). 2011 (In Russ.).

24. Nachinkin O.I. Polymer microfilters. Moscow: Chemistry, 1985 (In Russ.).

25. GOST 18227-98. Powder materials. Methods of tensile testing (In Russ.).

26. GOST 9849-86. Iron powders. Technic specifications (In Russ.).

27. Dorofeev Yu.G., Mikhailov V.V., Krivoshchekov V.O. The comparative analysis of magnetic-soft composite materials on the basis of the powder of iron for application in alternating magnetic fields. URL:http://electromeh.npi-tu.ru/assets/files/archive_1_2012.pdf (accessed: 17.08.2019) (In Russ.).

28. Rajkumar S., Sedhuraman K., Purimetla Santhi, A. Joycy Faustina Lourdes. Design and analysis of high speed swit-ched reluctance motor for two different materials. URL:http://www.ijeetc.com/index.php?m=content&c=index&a=show&catid=175&id=1055 (accessed: 17.08.2019).


Review

For citations:


Gasanov B.G., Tamadaev V.G., Bogachev V.O., Makhmudova E.R. Kinetics of dielectric coating formation on iron powders to obtain soft magnetic composite materials. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2019;(4):44-54. (In Russ.) https://doi.org/10.17073/1997-308X-2019-4-44-54

Views: 1027


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)