Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Comparison of morphological and structural characteristics of nanopowder particles obtained by natural diamond grinding and detonation synthesis

https://doi.org/10.17073/1997-308X-2019-4-55-67

Abstract

The study covers specific features of morphological and  structural characteristics exhibited by nanopowder particles obtained by  grinding  a  massive  natural  diamond  and  the method of detonation  synthesis.  High-resolution  transmission  and  scanning electron microscopy, small-angle X-ray scattering demonstrated that natural diamond nanopowder particles obtained by grinding have a wider range of sizes and  a plated appearance, unlike detonation synthesis nanopowders consisting of similar in size and isometric particles. X-ray diffraction analysis and  Raman spectroscopy used in addition to the methods mentioned above showed that  the structure of nanodiamond particles obtained from  natural diamond is similar to the structure of a detonation synthesis nanodiamond. Each  particle of natural nanopowder, as well as detonation synthesis nanodiamond, consists of a diamond core with a crystal lattice related to the cubic system and  a shell containing mainly non-diamond carbon forms with sp2 hybridization having a  complex structure.  The average particle size of nanopowders obtained from  natural diamond and  using detonation synthesis studied by three methods including BET showed results that are in satisfactory agreement with each other. The average nanoparticle size is about 24 nm for natural diamond powder and close to 5.6 nm for UDA-S-GO detonation synthesis nanodiamonds produced by the Federal Research and Production Center «Altai». An insignificant increase in the interatomic distances in diamond nanocrystals compared with a massive diamond crystal was shown experimentally. The study and  analysis of a numerous images of natural and  detonation synthesis diamond nanocrystals obtained by high-resolution transmission electron microscopy made it possible to establish that  the most frequent defects in nanodiamonds are dislocations and  point defects.

About the Authors

P. P. Sharin
Institute of Physical and Technical Problems of the North n.a. V.P. Larionov of Siberian Branch of Russian Academy of Sciences (IPTPN SB RAS)
Russian Federation

Cand. Sci. (Phys.-Math.), lead researcher of the Institute of Physical and  Technical Problems of the North n.a. V.P. Larionov of Siberian Branch of Russian Academy of Sciences (IPTPN SB RAS).

677000, Yakutsk, Oktyabrskaya str., 1.



A. V. Sivtseva
Institute of Physical and Technical Problems of the North n.a. V.P. Larionov of Siberian Branch of Russian Academy of Sciences (IPTPN SB RAS)
Russian Federation

Researcher of the Material Science Department of the IPTPN SB RAS.

677000, Yakutsk, Oktyabrskaya str., 1.



S. P. Yakovleva
Institute of Physical and Technical Problems of the North n.a. V.P. Larionov of Siberian Branch of Russian Academy of Sciences (IPTPN SB RAS)
Russian Federation

Dr. Sci. (Tech.), chief researcher of the Material Science Department of the IPTPN SB RAS.

677000, Yakutsk, Oktyabrskaya str., 1.



M. M. Kopyrin
Institute of Physical and Technical Problems of the North n.a. V.P. Larionov of Siberian Branch of Russian Academy of Sciences (IPTPN SB RAS)
Russian Federation

Postgraduate student, lead engineer of the Department of physical chemistry of materials and  technologies of the IPTPN SB RAS.

677000, Yakutsk, Oktyabrskaya str., 1.



S. A. Kuzmin
Physical-Technical Institute of the North-Eastern Federal University n.a. M.K. Ammosov (NEFU)
Russian Federation

Cand. Sci. (Tech.), assistant professor of the Department of Physics of Materials and  Welding Technology of the Physical-Technical Institute of the North-Eastern Federal University n.a.  M.K. Ammosov (NEFU).

677000, Yakutsk, Belinsky str., 58.



V. I. Popov
Physical-Technical Institute of the North-Eastern Federal University n.a. M.K. Ammosov (NEFU)
Russian Federation

Cand. Sci. (Phys.-Math.), senior researcher of the Scientific and technological laboratory «Graphene nanotechnologies» of the Physical and  Technical Institute of the NEFU.

677000, Yakutsk, Belinsky str., 58.



L. A. Nikiforov
Physical-Technical Institute of the North-Eastern Federal University n.a. M.K. Ammosov (NEFU)
Russian Federation

Cand. Sci. (Tech.), research engineer of the Laboratory of polymer nanocomposites technologies of the NEFU.

677000, Yakutsk, Belinsky str., 58.



References

1. Yongwei Zhu, Zhijing Feng, Baichun Wang, Xianyang Xu. Dispersion of nanodiamond and ultra-fine polishing of quartz wafer. China Particuology. 2004. Vol. 2. No. 4. P. 153—156.

2. Acharya B., Avva K.S., Thapa B., Pardue T.N., Krim J. Synergistic effect of nanodiamond and phosphate ester anti-wear additive blends. Lubricants. 2018. Vol. 6. No. 2. P. 56—70. DOI: doi.org/10.3390/lubricants6020056.

3. Raina A., Anand A. Tribological investigation of diamond nanoparticles for steel/steel contacts in boundary lubrication regime. Appl. Nanosci. 2017. Vol. 7. No. 7. P. 371—388. DOI: doi.org/10.1007/s13204-017-0590-y.

4. Zhang Y., Choi J.R., Park S.-J. Thermal conductivity and thermo-physical properties of nanodiamond-attached exfoliated hexagonal boron nitride/epoxy nanocomposites for microelectronics. Composites. Part A: Appl. Sci. Manufact. 2017. Vol. 101. P. 227—236. DOI:dx.doi.org/10.1016/j.compositesa.2017.06.019.

5. Afandi A., Howkins A., Boyd I., Jackman R. Nanodiamonds for device applications: An investigation of the properties of boron-doped detonation nanodiamonds. Sci. Rep. 2018. Vol. 8. No. 1. P. 1—10. DOI:doi.org/10.1038/s41598-018-21670-w.

6. Hsu S-H., Kang W.P., Davidson J.L., Huang J.H., Kerns D.V. Jr. Nanodiamond vacuum field emission integrated differential amplifier. IEEE Trans. Electron Devices. 2013. Vol. 60. No. 1. P. 487—493. DOI:doi.org/10.1109/TED.2012.2228485.

7. Tveritinova E.A., Zhitnev Yu.N, Kulakova I.I., Maslakov K.I., Nesterova E.A., Kharlanov A.N., Ivanov A.S., Savilov S.V., Lunin V.V. Effect of structure and surface properties on the catalytic activity of nanodiamond in the conversion of 1,2-dichloroethane. Russ. J. Phys. Chem. A. 2015. Vol. 89. No. 4. P. 680—687 (In Russ.) DOI:doi.org/10.1134/S0036024415040251.

8. Lin Y., Sun X., Su D., Centi G., Perathoner S. Catalysis by hybrid sp2/sp3 nanodiamonds and their role in the design of advanced nanocarbon materials. Chem. Soc. Rev. 2018. Vol. 47. No. 22. P. 8438—8473. DOI:doi.org/10.1039/C8CS00684A.

9. Yakovlev R.Yu., Solomatin A.S., Leonidov N.B., Kulakova I.I., Lisichkin G.V. Detonation nanodiamond — a perspective carrier for drug delivery systems. Russ. J. Gen. Chem. 2014. Vol. 84. No. 2. P. 379—390. DOI:doi.org/10.1134/S1070363214020406.

10. Schrand A.M., Dai L., Schlager J.J., Hussain S.M., Osawa E. Differential biocompatibility of carbon nanotubes and nanodiamonds. Diam. Relat. Mater. 2007. Vol. 16. No. 12. P. 2118—2123.

11. Zhao X., Wang T., Li Y., Huang L., Handschuh-Wang S. Polydimethylsiloxane/nanodiamond composite sponge for enhanced mechanical or wettability performance. Polymers. 2019. Vol. 11. No. 6. P. 948—960. DOI:doi.org/10.3390/polym11060948.

12. Vereshchagin A.L. Structure and reactivity of detonation diamonds. Yuzhno-sibirskii nauchnyi vestnik. 2017. No. 2 (18). P. 24—30 (In Russ.).

13. Dolmatov V.Yu., Veretennikova M.V., Marchukov V.A., Sushchev V.G. Currently available methods of industrial nanodiamond synthesis. Phys. Solid State. 2004. Vol. 46. No. 4. P. 611—615.

14. Sakovich G.V., Komarov V.F., Petrov E.A. Synthesis, properties, application and production of nanoscale synthetic diamonds. Pt. 1. Synthesis and properties. Sverkhtverdye materialy. 2002. No. 3. P. 3—18 (In Russ.).

15. Sharin P.P., Lebedev M.P., Yakovleva S.P., Vinokurov G.G., Struchkov N.F., Kuz’min S.A. Obtaining of natural diamonds ultra-dispersed powders and analysis of their properties. Perspektivnye materialy. 2014. No. 4. P. 58—63 (In Russ.).

16. Orlov Yu.L. Diamond mineralogy. Moscow: Nauka, 1984 (In Russ.).

17. Mikov S.N., Igo A.V., Gorelik V.S. Raman scattering at diamond quantum dots in a potassium bromide matrix. Phys. Solid State. 1995. Vol. 37. No. 10. P. 1619—1624.

18. Bukalov S.S., Mikhalitz jn L.A., Zubavichus Ya.V., Leites L.A., Novikov Yu.N. Investigation of the structure of graphite and some other sp2 carbon materials by means of micro-Raman spectroscopy and X-ray diffraction. Russ. Chem. J. 2006. Vol. 50. P. 83—91.

19. Aleksenskii A.E., Baidakova M.V., Vul’ A.Ya., Siklitskii V.I. The structure of diamond nanoclusters. Phys. Solid State. 1999. Vol. 41. No. 4. P. 668—671. DOI:doi.org/10.1134/1.1130846.

20. Chung P.-H., Perevedentseva E., Cheng C.-L. The particle size-dependent photoluminescence of nanodiamonds. Surf. Sci. 2007. Vol. 601. No. 18. P. 3866—3870.

21. Mikheev K.G., Shenderova O.A., Kogai V.Ya., Mogileva T.N., Mikheev G.M. Raman spectra of nanodiamonds of detonation and high pressure high temperature synthesis and the effect of laser action on their luminescence spectra. Khimicheskaya fizika i mezoskopiya. 2017. Vol. 19. No. 3. P. 396—406 (In Russ.).

22. Sharkov M.D., Boiko M.E., Ivashevskaya S.N., Konnikov S.G. Characterization of the structure of ultradispersed diamond using X-ray diffractometry and small-angle X-ray scattering. Phys. Solid State. 2014. Vol. 56. No. 11. P. 2343—2347. DOI: doi.org/10.1134/S1063783414110250.

23. Baidakova M.V., Kukushkina Yu.A., Sitnikova A.A., Yagovkina M.A., Kirilenko D.A., Sokolov V.V., Shestakov M.S., Vul’ A.Ya., Zousman B., Levinson O. Structure of nanodiamonds prepared by laser synthesis. Phys. Solid State. 2013. Vol. 55. No. 8. P. 1747—1753. DOI:doi.org/10.1134/S1063783413080027.

24. Yalovega G.E., Soldatov M.A., Soldatov A.V. Electronic and local structure of free diamond clusters as a function of cluster size. Poverkhnost’. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya. 2009. No. 7. P. 80—83 (In Russ.).

25. Baitinger E.M., Belenkov E.A., Brezhinskaya M.M., Greshnyakov V.A. Specific features of the structure of detonation nanodiamonds from results of electron microscopy investigations. Phys. Solid State. 2012. Vol. 54. No. 8. P. 1715—1722. DOI: doi.org/10.1134/S1063783412080057.

26. Gusev M.B., Babaev V.G., Khvostov V.A., Valliulova Z.Kh. Research ultra dispersed diamond pastes. Izvestiya RAN. Seriya Fizicheskaya. 1994. Vol. 56. No. 1. P. 191—194 (In Russ.).

27. Bogatyreva G.P., Sozin Yu.I., Oleinik N.A. Structure, substructure, phase composition of ultra dispersed diamonds of dynamic and detonation synthesis. Sverkhtverdye materialy. 1998. No. 4. P. 5—10 (In Russ.).

28. Osswald S., Yuchin G., Mochalin V., Kucheyev S.O., Gogotsi Y. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 2006. Vol. 128. No. 35. P. 11635—11642.

29. Plotnikov V.A., Dem’yanov B.F., Makarov S.I., Cherkov A.G. Atomic structure of detonation diamond nanocrystals. Fundamental’nye problemy sovremennogo materialovedeniya. 2012. Vol. 9. No. 4. P. 521—526 (In Russ.).

30. Plotnikov V.A., Dem’yanov B.F., Makarov S.V., Bogdanov D.G. Impurity detonation nanodiamond subsystem. Fundamental’nye problemy sovremennogo materialovedeniya. 2013. Vol. 10. No. 4. P. 487—492 (In Russ.).

31. Nemeth P., Garvie L.A.J., Buseck P.R. Twinning of cubic diamond explains reported nanodiamond polymorphs. Sci. Rep. 2015. Vol. 5. No. 1. P. 1—8. DOI: dx.doi.org/10.1038/srep18381.

32. Petit T., Puskar L. FTIR spectroscopy of nanodiamonds: Methods and interpretation. Diam. Relat. Mater. 2018. No. 89. P. 52—66. DOI:doi.org/10.1016/j.diamond.2018.08.005.


Review

For citations:


Sharin P.P., Sivtseva A.V., Yakovleva S.P., Kopyrin M.M., Kuzmin S.A., Popov V.I., Nikiforov L.A. Comparison of morphological and structural characteristics of nanopowder particles obtained by natural diamond grinding and detonation synthesis. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2019;(4):55-67. (In Russ.) https://doi.org/10.17073/1997-308X-2019-4-55-67

Views: 1085


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)