Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Nickel effect on the structure and properties of adaptive wear-resistant arc-PVD Ti–Al–Mo–N coatings

https://doi.org/10.17073/1997-308X-2019-4-68-77

Abstract

Comparative studies of the structural characteristics and  functional properties of Ti–Al–Mo–N and  Ti–Al–Mo–Ni–N coatings obtained by the arc-PVD method were carried out  in order to study the effect of nanostructuring nickel additive. The coatings featured by  multilayered architecture  with alternating layers of  titanium and  molybdenum nitrides. Molybdenum and  nickel concentrations were about 22 at.%  and  7 at.%, respectively, which corresponds to optimal quantities for the best strength and tribological properties. It was shown that  nickel introduction reduces the coating modulation period from  60  to  30  nm  with a simultaneous  increase  in  hardness from  37  to  45  GPa.  At the same time,  an  increase  in  the tensile  strength of coatings  was noted, which was judged by the relative plastic deformation behavior as well as H/E, H 3/E 2  parameters. Ductile nickel added into the solid nitride coating structure led to a decrease in the level of compressive macrostresses in the material from –2.25 to –0.58 GPa,  without, however, any decrease in hardness and  fracture toughness that  was shown by scratch tests. It is concluded that  the factor determining mechanical characteristics of the coating is not  the macrostressed state, but  the refinement of the coating material grain structure. Nickel positively affected the coating heat resistance successfully protecting the substrate material from oxidation at temperatures up to 700°C, which may be associated with the likelihood of the formation of NiMoO4 and NiTiO3 nickel-containing oxides on the surface. However, their formation, fracture, and  action as abrasive particles can  cause a change in the friction wear mechanism at high temperatures.

About the Authors

V. S. Sergevnin
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Engineer of the Department of functional nanosystems and  high-temperature materials (FNS&HTM), National University of Science and  Technology (NUST) «MISIS».

119049, Moscow, Leninkii pr., 4.



I. V. Blinkov
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Dr. Sci. (Tech.), prof. of the Department of FNS&HTM, NUST «MISIS».

119049, Moscow, Leninkii pr., 4.



A. O. Volkhonskii
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Tech.), associate prof. of the Department of FNS&HTM, NUST «MISIS».

119049, Moscow, Leninkii pr., 4.



D. S. Belov
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Engineer of the Department of FNS&HTM, NUST «MISIS».

119049, Moscow, Leninkii pr., 4.



References

1. Anikin V.N., Blinkov I.V., Volkhonskii A.O., Sobolev N.A., Kratokhvil R.V., Frolov A.E., Tsareva S.G. Ion-plasma Ti—A l—N coatings on a cutting hard-alloy tool operating under conditions of constant and alternatingsign loads. Russ. J. Non-Ferr. Met. 2009. Vol. 50. No. 4. P. 424—431.

2. Tian B., Yue W., Fu Z., Gu Y., Wang C., Liu J. Surface properties of mo-implanted PV D TiN coatings using MEV VA source. Appl. Surf. Sci. 2013. Vol. 280. P. 482—488.

3. Tomaszewski L., Gulbinski W., Urbanowicz A., Suszko T., Lewandowski A., Gulbinski W. TiAlN based wear resistant coatings modified by molybdenum addition. Vacuum. 2015. Vol. 121. P. 223—229.

4. Yang K., Xian G., Zhao H., Fan H., Wang J., Wang H., Du H. Effect of Mo content on the structure and mechanical properties of TiAlMoN films deposited on WC—Co cemented carbide substrate by magnetron sputtering. Int. J. Refract. Met. Hard. Mater. 2015. Vol. 52. P. 29—35.

5. Sergevnin V.S., Blinkov I.V., Volkhonskii A.O., Belov D.S., Kuznetsov D.V., Gorshenkov M.V., Skryleva E.A. Wear behaviour of wear-resistant adaptive nano-multilayered Ti—Al—Mo—N coatings. Appl. Surf. Sci. 2016. Vol. 388. P. 13—23.

6. Sergevnin V.S., Blinkov I.V., Belov D.S., Smirnov N.I., Volkhonskii A.O., Kuptsov K.A. Wear and erosion of arc-PVD multilayer Ti—Al—Mo—N coatings under various conditions of friction and loading. Int. J. Adv. Manuf. Technol. 2018. Vol. 98. P. 593—601.

7. Akbari A., Riviere J.P., Templier C., Bourhis E.L. Structural and mechanical properties of IBAD deposited nanocomposite Ti—Ni—N coatings. Surf. Coat. Technol. 2006. Vol. 200. P. 6298—6302.

8. Akbari A., Templier C., Beaufort M. Ion beam assisted deposition of TiN—Ni-nanocomposite coatings. Surf. Coat. Technol. 2011. Vol. 206. P. 972—975.

9. Kumar M., Mishra S., Mitra R. Effect of Ar: N2 ratio on structure and properties of Ni—TiN nanocomposite thin films processed by reactive RF/DC magnetron sputtering. Surf. Coat. Technol. 2013. Vol. 228 . P. 100—114.

10. Pagon A.M., Doyle E.D., McCulloch D.G. The microstructure and mechanical properties of TiN—Ni in nanocomposite thin films. Surf. Coat. Technol. 2013. Vol. 235. P. 394—400.

11. Belov D.S., Blinkov I.V., Volkhonskii A.O. The effect of Cu and Ni on the nanostructure and properties of arc-PV D coatings based on titanium nitride. Surf. Coat. Technol.2014. Vol. 260. P. 186—197.

12. Sergevnin V.S., Blinkov I.V., Volkhonskii A.O., Belov D.S., Chernogor A.V. Structure formation of adaptive arc-PV D Ti—Al—Mo—N and Ti—Al—Mo—Ni—N coatings and their wear-resistance under various friction conditions. Surf. Coat. Technol. 2019. Vol. 376. P. 38—43. https://doi.org/10.1016/j.surfcoat.2018.09.068.

13. Valvoda V., Kuzel R.Jr, Cerny R., Rafaja D., Musil J., Kadlec C., Perry A.J. Structural analysis of tin films by Seemann-Bohlin X-ray diffraction. Thin Solid Films. 1990. Vol. 193—194. P. 401—408.

14. Nezu A., Matsuzaka H., Yokoyama R. A current perspective of the state-of-the-art in stress analysis. Rigaku J. 2014. Vol. 30. Iss. 2. P. 4—12.

15. Perry A.J. X-ray residual stress measurement in TiN, ZrN and Hf N films using the Seemann-Bohlin method. Thin Solid Films. 1992. Vol. 214. P. 169—174.

16. Zhou Y., Asaki R., Soe W.-H., Yamamoto R., Chen R., Iwabuchi A. Hardness anomaly, plastic deformation work and fretting wear properties of polycrystalline TiN/CrN multilayers. Wear. 1999. Vol. 236. P. 159—164.

17. Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992. Vol. 7. P. 1564—1583.

18. ISO/FDIS14577-1. Metallic materials — Instrumented indentation test for hardness and materials parameters. 2002.

19. Mathia T.G., Lamy B. Sclerometric characterization of nearly brittle materials. Wear. 1986. Vol. 108. P. 385—399.

20. Leyland A., Matthews A. On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behavior. Wear. 2000. Vol. 246. P. 1—11.

21. Lawn B.R., Wilshaw T.R. Indentation fracture: principles and applications. J. Mater. Sci. 1975. Vol. 10. P. 1049—1081.

22. Evans A.G., Wilshaw T.R. Quasi-static solid particle damage in brittle solids. I. Observations analysis and implications. Acta Met. 1976. Vol. 24. P. 939—956.

23. Tsui T.Y., Pharr G.M., Oliver W.C., Bhatia C.S., White R.L., Anders S., Anders A., Brown I.G. Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks. Mater. Res. Soc. Symp. Proc. 1995. Vol. 383. P. 447—452.

24. Andreeva V.V., Kazarin V.I. New construction chemically resistant metallic materials. Moscow: Goskhimizdat, 1961 (In Russ.).


Review

For citations:


Sergevnin V.S., Blinkov I.V., Volkhonskii A.O., Belov D.S. Nickel effect on the structure and properties of adaptive wear-resistant arc-PVD Ti–Al–Mo–N coatings. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2019;(4):68-77. (In Russ.) https://doi.org/10.17073/1997-308X-2019-4-68-77

Views: 728


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)