Nickel effect on the structure and properties of adaptive wear-resistant arc-PVD Ti–Al–Mo–N coatings
https://doi.org/10.17073/1997-308X-2019-4-68-77
Abstract
Comparative studies of the structural characteristics and functional properties of Ti–Al–Mo–N and Ti–Al–Mo–Ni–N coatings obtained by the arc-PVD method were carried out in order to study the effect of nanostructuring nickel additive. The coatings featured by multilayered architecture with alternating layers of titanium and molybdenum nitrides. Molybdenum and nickel concentrations were about 22 at.% and 7 at.%, respectively, which corresponds to optimal quantities for the best strength and tribological properties. It was shown that nickel introduction reduces the coating modulation period from 60 to 30 nm with a simultaneous increase in hardness from 37 to 45 GPa. At the same time, an increase in the tensile strength of coatings was noted, which was judged by the relative plastic deformation behavior as well as H/E, H 3/E 2 parameters. Ductile nickel added into the solid nitride coating structure led to a decrease in the level of compressive macrostresses in the material from –2.25 to –0.58 GPa, without, however, any decrease in hardness and fracture toughness that was shown by scratch tests. It is concluded that the factor determining mechanical characteristics of the coating is not the macrostressed state, but the refinement of the coating material grain structure. Nickel positively affected the coating heat resistance successfully protecting the substrate material from oxidation at temperatures up to 700°C, which may be associated with the likelihood of the formation of NiMoO4 and NiTiO3 nickel-containing oxides on the surface. However, their formation, fracture, and action as abrasive particles can cause a change in the friction wear mechanism at high temperatures.
About the Authors
V. S. SergevninRussian Federation
Engineer of the Department of functional nanosystems and high-temperature materials (FNS&HTM), National University of Science and Technology (NUST) «MISIS».
119049, Moscow, Leninkii pr., 4.
I. V. Blinkov
Russian Federation
Dr. Sci. (Tech.), prof. of the Department of FNS&HTM, NUST «MISIS».
119049, Moscow, Leninkii pr., 4.
A. O. Volkhonskii
Russian Federation
Cand. Sci. (Tech.), associate prof. of the Department of FNS&HTM, NUST «MISIS».
119049, Moscow, Leninkii pr., 4.
D. S. Belov
Russian Federation
Engineer of the Department of FNS&HTM, NUST «MISIS».
119049, Moscow, Leninkii pr., 4.
References
1. Anikin V.N., Blinkov I.V., Volkhonskii A.O., Sobolev N.A., Kratokhvil R.V., Frolov A.E., Tsareva S.G. Ion-plasma Ti—A l—N coatings on a cutting hard-alloy tool operating under conditions of constant and alternatingsign loads. Russ. J. Non-Ferr. Met. 2009. Vol. 50. No. 4. P. 424—431.
2. Tian B., Yue W., Fu Z., Gu Y., Wang C., Liu J. Surface properties of mo-implanted PV D TiN coatings using MEV VA source. Appl. Surf. Sci. 2013. Vol. 280. P. 482—488.
3. Tomaszewski L., Gulbinski W., Urbanowicz A., Suszko T., Lewandowski A., Gulbinski W. TiAlN based wear resistant coatings modified by molybdenum addition. Vacuum. 2015. Vol. 121. P. 223—229.
4. Yang K., Xian G., Zhao H., Fan H., Wang J., Wang H., Du H. Effect of Mo content on the structure and mechanical properties of TiAlMoN films deposited on WC—Co cemented carbide substrate by magnetron sputtering. Int. J. Refract. Met. Hard. Mater. 2015. Vol. 52. P. 29—35.
5. Sergevnin V.S., Blinkov I.V., Volkhonskii A.O., Belov D.S., Kuznetsov D.V., Gorshenkov M.V., Skryleva E.A. Wear behaviour of wear-resistant adaptive nano-multilayered Ti—Al—Mo—N coatings. Appl. Surf. Sci. 2016. Vol. 388. P. 13—23.
6. Sergevnin V.S., Blinkov I.V., Belov D.S., Smirnov N.I., Volkhonskii A.O., Kuptsov K.A. Wear and erosion of arc-PVD multilayer Ti—Al—Mo—N coatings under various conditions of friction and loading. Int. J. Adv. Manuf. Technol. 2018. Vol. 98. P. 593—601.
7. Akbari A., Riviere J.P., Templier C., Bourhis E.L. Structural and mechanical properties of IBAD deposited nanocomposite Ti—Ni—N coatings. Surf. Coat. Technol. 2006. Vol. 200. P. 6298—6302.
8. Akbari A., Templier C., Beaufort M. Ion beam assisted deposition of TiN—Ni-nanocomposite coatings. Surf. Coat. Technol. 2011. Vol. 206. P. 972—975.
9. Kumar M., Mishra S., Mitra R. Effect of Ar: N2 ratio on structure and properties of Ni—TiN nanocomposite thin films processed by reactive RF/DC magnetron sputtering. Surf. Coat. Technol. 2013. Vol. 228 . P. 100—114.
10. Pagon A.M., Doyle E.D., McCulloch D.G. The microstructure and mechanical properties of TiN—Ni in nanocomposite thin films. Surf. Coat. Technol. 2013. Vol. 235. P. 394—400.
11. Belov D.S., Blinkov I.V., Volkhonskii A.O. The effect of Cu and Ni on the nanostructure and properties of arc-PV D coatings based on titanium nitride. Surf. Coat. Technol.2014. Vol. 260. P. 186—197.
12. Sergevnin V.S., Blinkov I.V., Volkhonskii A.O., Belov D.S., Chernogor A.V. Structure formation of adaptive arc-PV D Ti—Al—Mo—N and Ti—Al—Mo—Ni—N coatings and their wear-resistance under various friction conditions. Surf. Coat. Technol. 2019. Vol. 376. P. 38—43. https://doi.org/10.1016/j.surfcoat.2018.09.068.
13. Valvoda V., Kuzel R.Jr, Cerny R., Rafaja D., Musil J., Kadlec C., Perry A.J. Structural analysis of tin films by Seemann-Bohlin X-ray diffraction. Thin Solid Films. 1990. Vol. 193—194. P. 401—408.
14. Nezu A., Matsuzaka H., Yokoyama R. A current perspective of the state-of-the-art in stress analysis. Rigaku J. 2014. Vol. 30. Iss. 2. P. 4—12.
15. Perry A.J. X-ray residual stress measurement in TiN, ZrN and Hf N films using the Seemann-Bohlin method. Thin Solid Films. 1992. Vol. 214. P. 169—174.
16. Zhou Y., Asaki R., Soe W.-H., Yamamoto R., Chen R., Iwabuchi A. Hardness anomaly, plastic deformation work and fretting wear properties of polycrystalline TiN/CrN multilayers. Wear. 1999. Vol. 236. P. 159—164.
17. Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992. Vol. 7. P. 1564—1583.
18. ISO/FDIS14577-1. Metallic materials — Instrumented indentation test for hardness and materials parameters. 2002.
19. Mathia T.G., Lamy B. Sclerometric characterization of nearly brittle materials. Wear. 1986. Vol. 108. P. 385—399.
20. Leyland A., Matthews A. On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behavior. Wear. 2000. Vol. 246. P. 1—11.
21. Lawn B.R., Wilshaw T.R. Indentation fracture: principles and applications. J. Mater. Sci. 1975. Vol. 10. P. 1049—1081.
22. Evans A.G., Wilshaw T.R. Quasi-static solid particle damage in brittle solids. I. Observations analysis and implications. Acta Met. 1976. Vol. 24. P. 939—956.
23. Tsui T.Y., Pharr G.M., Oliver W.C., Bhatia C.S., White R.L., Anders S., Anders A., Brown I.G. Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks. Mater. Res. Soc. Symp. Proc. 1995. Vol. 383. P. 447—452.
24. Andreeva V.V., Kazarin V.I. New construction chemically resistant metallic materials. Moscow: Goskhimizdat, 1961 (In Russ.).
Review
For citations:
Sergevnin V.S., Blinkov I.V., Volkhonskii A.O., Belov D.S. Nickel effect on the structure and properties of adaptive wear-resistant arc-PVD Ti–Al–Mo–N coatings. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2019;(4):68-77. (In Russ.) https://doi.org/10.17073/1997-308X-2019-4-68-77