Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Copper deposition from its sulfate solution onto titanium powder with simultaneous mechanical activation of mixture

https://doi.org/10.17073/1997-308X-2020-4-10

Abstract

Cu–Ti composite particles were obtained using the method of copper deposition from its sulfate solution onto titanium powder particles with simultaneous mechanical activation (MA) of the mixture in an AGO-2 planetary ball mill for 5 min. CuSO4 ·5H2O concentration in the solutions was 10 and 16 % providing a molar ratio of Cu/Ti = 0.85 and 1.36, respectively, in case of complete copper reduction. When mechanically activated, copper is rapidly reduced to a highly dispersed partially amorphous powder and composite particles with a fine laminate structure and high reactivity are formed. The composite powders obtained were washed and stored in argon atmosphere, since reduced copper is highly active and rapidly oxidizes in air to Cu2O. After drying, the mixture was additionally mechanically activated during 5 min. Billets 3 mm in diameter and 1.5 mm in height were pressed from the obtained powders and heated in atmosphere to 700–1200 °C. When the samples were heated, an intense reaction began with heat release (thermal explosion) and formation of intermetallic compounds of TiCu, Ti2Cu3 and Ti2Cu. The critical ignition temperature for the composite powders obtained by MA with simultaneous copper deposition from its solution is 480 °С, which is 400 °С lower than the ignition temperature of a conventional mixture of titanium and copper powders. The alloy has a dendritic structure at heating temperatures close to the melting point. When the melting point is exceeded by more than 100 °C, phase distribution in the alloy becomes more uniform, and their size decreases.

About the Authors

S. G. Vadchenko
Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)
Russian Federation

Vadchenko S.G. – Cand. Sci. (Phys.-Math.), leading researcher, laboratory of dynamics of microheterogeneous processes.

142432, Moscow region, Chernogolovka, Academician Osip’yan str., 8



E. V. Suvorova
Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)
Russian Federation

Suvorova E.V. – engineer, laboratory of dynamics of microheterogeneous processes.

142432, Moscow region, Chernogolovka, Academician Osip’yan str., 8



N. I. Mukhina
Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)
Russian Federation

Mukhina N.I. – technologist, laboratory of materials science.

142432, Moscow region, Chernogolovka, Academician Osip’yan str., 8



I. D. Kovalev
Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)
Russian Federation

Kovalev I.D. – Cand. Sci. (Phys.-Math.), researcher, laboratory of X-ray investigation.

142432, Moscow region, Chernogolovka, Academician Osip’yan str., 8



References

1. Alshammari Y., Yang F., Bolzoni L. Low-cost powder metallurgy Ti—Cu alloys as a potential antibacterial material. J. Mech. Behav. Biomed. Mater. 2019. Vol. 95. P. 232—239. https://doi.org/10.1016/j.jmbbm.2019.04.004.

2. Zhou Kun, Liu Ying, Pang Shujie, Zhang Tao. Formation and properties of centimeter-size Zr—Ti—Cu—Al—Y bulk metallic glasses as potential biomaterials. J Alloys Compd. 2016. Vol. 656. P. 389—394. http://dx.doi.org/10.1016/j.jallcom.2015.09.254.

3. Liu Ying, Pang Shujie, Li Haifei, Hu Qiao, Chen Bin, Zhang Tao. Formation and properties of Ti-based Ti—Zr—CuFe—Sn—Si bulk glasses with different (Ti + Zr)/Cu ratios for biomedical application. Intermetallics. 2016. Vol. 72. P. 36—43. DOI: 10.1016/j.intermet.2016.01.007.

4. Satoshi Semboshi1, Satoshi Yamauchi, Hiroshi Numakura. Formation of titanium hydride in dilute CuTi alloy by aging in hydrogen atmosphere and its effects on electrical and mechanical properties. Mater. Trans. 2013. Vol. 54. No. 4. P. 520—527. http://dx.doi.org/10.2320/matertrans.M2012423.

5. Kalin B.A., Fedotov V.T., Sevryukov O.N., Mamedova T.T., Rybkin B.V., Ivanov A.V., Timoshin S.N. Development and application of quick-hardened solders for precision brazing of dissimilar materials in nuclear technology. Voprosy atomnoi nauki i tekhniki. 2005. No. 5. P. 150—155 (In Russ.).

6. Brunelli K., Dabalà M., Magrini M. Cu-based amorphous alloy electrodes for fuel cells. J. Appl. Electrochem. 2002. Vol. 32. No. 2. P. 145—148. DOI: 10.1023/A:1014733910695.

7. Maeland A.J. Rapidly quenched metals. Amsterdam: Elsevier, 1985. P. 1507.

8. Shmorgun V.G., Slautin O.V., Evstropov D.A., Taube A.O. Diffusion processes on interlayer boundary of explosivewelded-ply composite of system of Cu—Ti. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya. 2014. No. 4. P. 36—39 (In Russ.). https://doi.org/10.17073/1997-308X-2014-4-36-39.

9. Tomolya K. Ti—Cu-based amorphous powders produced by ball-milling. Mater. Sci. Forum. 2017. Vol. 879. P. 1974—1979. https://doi.org/10.4028/www.scientific.net/MSF.879.1974.

10. Delogu F., Cocco G. Compositional effects on the mechanochemical synthesis of Fe—Ti and Cu—Ti amorphous alloys by mechanical alloying, J. Alloys. Compd. 2003. Vol. 352. No. 1. P. 92—98. DOI: 10.1016/S09258388(02)01109-X.

11. Molnar A., Domokos L., Katona T., Martinek T., Mulas G., Cocco G., Bertoti I., Szepvolgyi J. Activation of amorphous Cu—M (M — Ti, Zr, or Hf) alloy powders made by mechanical alloying. Mater. Sci. Eng. 1997. No. 226—228. P. 1074—1078.

12. Guwer A., Nowosielski R., Borowski A., Babilas R. Fabrication of copper-titanium powders prepared by mechanical alloying. Ind. J. Eng. Mater. Sci. 2014. Vol. 21. P. 261—271. http://hdl.handle.net/123456789/28985.

13. Grigor’eva T.F., Šepelák V., Letsko A.I., Talako T.L., Kuznetsova T.A., Tsybulya S.V., Ilyushchenko A.F., Lyakhov N.Z. Mechanochemical synthesis of nanocomposites for interacting metals Cu—Zr, Cu—Ti. Powder Metall. Progr. 2011. Vol. 11. No. 3—4. P. 277—283.

14. Bateni M.R., Mirdamadi S., Ashrafizadeh F., Szpunar J.A., Drew R.A.L. Formation of Ti—Cu intermetallic coating on copper substrate. Mater. Manuf. Proc. 2001. Vol. 16. Iss. 2b. P. 219—228. doi.org/10.1081/AMP-100104302.

15. Meilakh A.G. Production and properties of steels from nickel plated iron powders. Stal’. 2014. No. 2. P. 71—74 (In Russ.).

16. Kontsevoi Yu.V., Dolmatov A.V., Pastukhov E.A., Grigor’eva T.F. Mechanical plating the Fe—Al and Fe—Cu. Dispersed systems under dynamic loads. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya. 2015. No. 1. P. 8—11 (In Russ.). https://doi.org/10.17073/1997-308X-2015-1-8-11.

17. Vadchenko S.G., Boyarchenko O.D., Shkodich N.F., Rogachev A.S. Thermal explosion in various Ni—Al systems: Effect of mechanical activation. Int. J. SHS. 2013. Vol. 22. No. 1. P. 60—64. DOI: 10.3103/S1061386213010123.

18. Naoya Shirasawa, Yorinobu Takigawa, Tokuteru Uesugi, Kenji Higashi. Calculation of alloying effect on formation enthalpy of TiCu intermetallics from firstprinciples calculations for designing Ti—Cu-system metallic glasses. Philos. Mag. Lett. 2016. Vol. 96. Iss. 1 P. 1—8. http://dx.doi.org/10.1080/09500839.2015.1134833.

19. Eremenko V.N., Buyanov Y.I., Prima S.B. Phase diagram of the system titanium-copper. Powder Metall. Met. Ceram. 1966. Vol. 5. P. 494—502. https://doi.org/10.1007/BF00775543.

20. Shanker Rao T.L., Lad K.N., Pratap A. Study of non-isothermal crystallization of amorphous Cu50 Ti 50 alloy. J. Therm. Anal. Calorim. 2004. Vol. 78. Iss. 3. P. 769—774. https://doi.org/10.1007/s10973-005-0444-0.

21. Rogachev A.S., Vadchenko S.G., Aronin A.S., Shchkin A.S., Kovalev D.Yu., Nepapushev A.A., Rouvimov S., Mukasyan A.S. Self-sustained exothermal waves in amorphous and nanocrystalline films: A comparative study. J. Alloys Compd. 2018. Vol. 749. P. 44—51. DOI: 10.1016/j.jallcom.2018.03.255.

22. Shkodich N.F., Rogachev A.S., Vadchenko S.G., Kovalev I.D., Nepapushev A.A., Rouvimov S.S., Mukasyan A.S. Formation of amorphous structures and their crystallization in the Cu—Ti system by high-energy ball milling. Russ. J. Non-Ferr. Met. 2018. Vol. 59. No. 5. P. 543—549. DOI:10.3103/S1067821218050176.

23. Kovalev D.Y., Vadchenko S.G., Rogachev A.S., Alymov M.I., Aronin A.S. Time-resolved X-ray diffraction study of the transition of an amorphous TiCu alloy to the crystalline state. Dokl. Phys. 2017. Vol. 62. Iss. 3. P. 111—114. DOI: 10.1134/S1028335817030028.


Review

For citations:


Vadchenko S.G., Suvorova E.V., Mukhina N.I., Kovalev I.D. Copper deposition from its sulfate solution onto titanium powder with simultaneous mechanical activation of mixture. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2020;(1):4-10. (In Russ.) https://doi.org/10.17073/1997-308X-2020-4-10

Views: 1069


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)