Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Determination of the growth time period of loose zinc deposit using interval analysis methods

https://doi.org/10.17073/1997-308X-2020-11-21

Abstract

The peculiarity of obtaining metal powders by direct current electrolysis is changes in the morphology of particles over the loose deposit layer thickness up to the formation of large spherulites. Deposit should be periodically removed from the cathode in order to obtain a powder with homogeneous composition. This paper justifies the choice of the parameter describing the change in loose deposit properties, and proposes a method for determining the periodicity of its removal from the cathode. Loose zinc deposits were obtained at 25 °C from zincate electrolyte containing 0.3 mol·l–1 of ZnO and 4 mol·l–1 of NaOH at a current setpoint exceeding 6 times the limiting diffusion current calculated using the smooth electrode. Electrode potential, deposit thickness and evolved hydrogen volume were measured directly in the process of electrolysis. Current redistribution between the metal reduction and hydrogen evolution leads to a change in the structure of loose deposit particles. It is shown that the differential current efficiency of zinc is the parameter describing the change in the loose zinc deposit density. Its value should not exceed 0.96 to ensure deposition of loose deposit with homogeneous properties. A further increase in current efficiency will lead to the formation of aggregates at the deposit growth front. It is proposed to determine the periodicity of loose deposit removal from the cathode using the empirical equation for the time dependency of differential current efficiency of zinc. The mathematical and statistical analysis of the data obtained in six replicates was carried out. The interval approach made it possible to significantly narrow the range of permissible differential current efficiency values and, as a consequence, to determine empirical equation coefficients with acceptable accuracy and calculate the growth time period of a deposit with homogeneous structure. The obtained approach can be used to estimate the time period of loose metal deposition accompanied by hydrogen evolution.

About the Authors

V. S. Nikitin
Ural Federal University (UrFU)
Russian Federation

Nikitin V.S. – Cand. Sci. (Chem.), senior lecturer of the Department of technology of electrochemical manufactures (TEM).

620062, Yekaterinburg, Mira str., 19



T. N. Ostanina
Ural Federal University (UrFU)
Russian Federation

Ostanina T.N. – Dr. Sci. (Chem.), prof. of the Department of TEM.

620062, Yekaterinburg, Mira str., 19



S. I. Kumkov
Ural Branch of the Russian Academy of Sciences (IMM UB RAS)
Russian Federation

Kumkov S.I. – Cand. Sci. (Tech.), senior research scientist of N.N. Krasovskii Institute of Mathematics and Mechanics.

620108, Yekaterinburg, S. Kovalevskaya str., 16



V. M. Rudoy
Ural Federal University (UrFU)
Russian Federation

Rudoy V.M. – Dr. Sci. (Chem.), prof. of the Department of TEM.

620062, Yekaterinburg, Mira str., 19



N. I. Ostanin
Ural Federal University (UrFU)
Russian Federation

Ostanin N.I. – Cand. Sci. (Tech.), assistant prof. of the Department of TEM.

620062, Yekaterinburg, Mira str., 19



References

1. Neikov O.D., Naboychenko S.S., Yefimov N.A. Handbook of non-ferrous metal powders: Technologies and applications. 2-nd ed. Elsevier, 2019. DOI: 10.1016/C2014-003938-X.

2. Petrii O.A. Electrosynthesis of nanostructures and nanomaterials. Russ. Chem. Rev. 2015. Vol. 84. Iss. 2. Р. 159—193. DOI: 10.1070/RCR4438.

3. Antsiferov V.N., Bobrov G.V., Druzhinin L.K. Powder metallurgy and sputtered coatings. Moscow: Metallurgiya, 1987 (In Russ.).

4. Luca Mattarozzi, Sandro Cattarin, Nicola Comisso, Arianna Gambirasi, Paolo Guerriero, Marco Musiani, Lourdes Vázquez-Gómez, Enrico Verlato. Hydrogen evolution assisted electrodeposition of porous Cu—Ni alloy electrodes and their use for nitrate reduction in alkali. Electrochim. Acta. 2014. Vol. 140. P. 337—344. DOI: 10.1016/j.electacta.2014.04.048.

5. Shin H.-C., Liu M. Three-dimensional porous copper—tin alloy electrodes for rechargeable lithium batteries. Adv. Funct. Mater. 2005. Vol. 15. P. 582—586. DOI: 10.1002/adfm.200305165.

6. Blake J.P., Lathe A.J., Suresh K.B. Building with bubbles: the formation of high surface area honeycomb-like films via hydrogen bubble templated electrodeposition. Chem. Commun. 2015. Vol. 51. P. 4331—4346. DOI: 10.1039/C4CC06638C.

7. Ullah S., Badshah A., Ahmed F., Raza R., Altaf A.A., Hussain R. Electrodeposited zinc electrodes for high current Zn/AgO bipolar batteries. Int. J. Electrochem. Sci. 2011. Iss. 6. Р. 3801—3811.

8. Mojtahedi M., Goodarzi M., Sharifi B., Khaki J.V. Effect of electrolysis condition of zinc powder production on zinc-silver oxide battery operation. Energy Convers. Manag. 2011. Vol. 52. Iss. 4. Р. 1876—1880. DOI: 10.1016/j.enconman.2010.11.001.

9. Nekouei R.K., Rashchi F., Amadeh A.A. Using design of experiments in synthesis of ultra-fine copper particles by electrolysis. Powd. Tech. 2013. Vol. 237. Р. 165—171. DOI: 10.1016/j.powtec.2013.01.032.

10. Nekouei R.K., Rashchi F., Ravanbakhsh A. Copper nanopowder synthesis by electrolysis method in nitrate and sulfate solutions. Powd. Tech. 2013. Vol. 250. Р. 91—96. DOI: 10.1016/j.powtec.2013.10.012.

11. Nikolić N.D., Vaštag D.D., Živković P.M., Jokić B., Branković G. Influence of the complex formation on the morphology of lead powder particles produced by the electrodeposition processes. Adv. Powd. Tech. 2013. Vol. 24. Iss. 3. P. 674—682. DOI: 10.1016/j.apt.2012.12.008.

12. Sharifi B., Mojtahedi M., Goodarzi М., Vahdati K.J. Effect of alkaline electrolysis conditions on current efficiency and morphology of zinc powder. Hydrometallurgy. 2009. Vol. 99. Iss. 1. Р. 72—76. DOI: 10.1016/j.hydromet.2009.07.003.

13. Ostanina T.N., Rudoi V.M., Patrushev A.V., Darintseva A.B., Farlenkov A.S. Modelling the dynamic growth of copper and zinc dendritic deposits under the galvanostatic electrolysis conditions. J. Electroanal. Chem. 2015. Vol. 750. P. 9—18. DOI: 10.1016/j.jelechem.2015.04.031.

14. Orhan G., Gezgin J.G.G. Effect of electrolysis parameters on the morphologies of copper powders obtained at high current densities. Serb. Chem. Soc. 2012. Vol. 77. Iss. 5. Р. 651—665. DOI: 10.1016/j.powtec.2010.03.003.

15. Nikolić N.D., Branković G., Popov K.I. Optimization of electrolytic process of formation of open and porous copper electrodes by the pulsating current (PC) regime. Mater. Chem. Phys. 2011. Vol. 125. Iss. 3. Р. 587—594. DOI: 10.1016/j.matchemphys.2010.10.013.

16. Nikolić N.D., Branković G., Pavlović M.G. Correlate between morphology of powder particles obtained by the different regimes of electrolysis and the quantity of evolved hydrogen. Powd. Tech. 2012. Vol. 221. P. 271—277. DOI: 10.1016/j.powtec.2012.01.014.

17. Nikolić N.D., Branković G., Maksimović V.M. Influence of potential pulse conditions on the formation of honeycomblike copper electrodes. J. Electroanal. Chem. 2009. Vol. 635. Р. 111—119. DOI: 10.1016/j.jelechem.2009.08.005.

18. Pavlović M.G., Pavlović L.J., Maksimović V.M., Nikolić N.D., Popov K.I. Characterization and morphology of copper powder particles as a function of different electrolytic regimes. Int. J. Electrochem. Sci. 2010. Vol. 5. Iss. 12. Р. 1862—1878.

19. Jagtap R.N., Rakesh N., Zaffar H.S., Malshe V.C. Predictive power for life and residual life of the zinc richprimer coatings with electrical measurement. Prog. Org. Coat. 2007. Vol. 58. Iss. 4. P. 253—258. DOI:10.1016/j.porgcoat.2006.08.015.

20. Kalendová A. Effects of particle sizes and shapes of zinc metal on the properties of anticorrosive coatings. Prog. Org. Coat. 2003. Vol. 46. Iss. 4. P. 324—332. DOI:10.1016/S0300-9440(03)00022-5.

21. Sokolovskaya E.E., Osipova M.L., Murashova I.B., Darintseva A.B., Savel’ev A.M., Mukhamadeev F.F. Analysis of structural variations of the precipitate based on monitoring the industrial electrolysis of copper powders of various brands. Russ. J. Non-Ferr. Met. 2013. Vol. 54. No. 6. P. 497—503. DOI: 10.3103/S1067821213060291.

22. Ostanina T.N., Rudoy V.M., Nikitin V.S., Darintseva A.B., Demakov S.L. Change in the physical characteristics of the dendritic zinc deposits in the stationary and pulsating electrolysis. J. Electroanal. Chem. 2017. Vol. 784. P. 13—24. DOI: 10.1016/j.jelechem.2016.11.063.

23. Nikolić N.D., Branković G., Pavlović M.G., Popov K.I. The effect of hydrogen co-deposition on the morphology of copper electrodeposits. II. Correlation between the properties of electrolytic solutions and the quantity of evolved hydrogen. J. Electroanal. Chem. 2008. Vol. 621. Iss. 1. Р. 13—21. DOI: 10.1016/j.jelechem.2008.04.006.

24. Nicolić N.D., Popov K.I., Pavlović L.J., Pavlović M.G. The effect of hydrogen codeposition on the morphology of copper electrodeposits. I. The concept of effective overpotential. J. Electroanal. Chem. 2006. Vol. 588. Iss. 1. Р. 88—98. DOI: 10.1016/j.jelechem.2005.12.006.

25. Nikolić N.D., Pavlović Lj.J., Pavlović M.G., Popov K.I. Morphologies of electrochemically formed copper powder particles and their dependence on the quantity of evolved hydrogen. Powd. Tech. 2008. Vol. 185. Iss. 3. P. 195—201. DOI: 10.1016/j.powtec.2007.10.014.

26. Yakubova T.V., Murashova I.B. Modeling of electrocrystallization of loose deposits from aqueous solution. Localization of hydrogen reduction reaction and ways of its removal. Elektrokhimiya. 1995. Vol. 31. P. 463—486 (In Russ.).

27. Osipova M.L., Murashova I.B., Darintseva A.B., Onuchina D.L. Current efficiency of dendritic copper deposit for PMS11 powder as a parameter determining its structure. Gal’vanotekhnika i obrabotka poverkhnosti. 2012. Vol. 19. No. 3. P. 35—41 (In Russ.).

28. Ostanina T.N., Rudoy V.M., Nikitin V.S., Darintseva A.B., Zalesova O.L., Porotnikova N.M. Determination of the surface of dendritic electrolytic zinc powders and evaluation of its fractal dimension. Russ. J. Non-Ferr. Met. 2016. Vol. 57. No. 1. P. 47—51. DOI: 10.3103/S1067821216010120.

29. Diggle J.W., Despić A.R., Bockris J.O. The mechanism of the dendritic crystallization of zinc. J. Electrochem. Soc. 1969. Vol. 116. Iss. 11. Р. 1503—1514. DOI: 10.1149/1.2411588.

30. R 40.2.028—2003. Recommendations. The state system for providing uniqueness of measuring. Recommendations on building the calibration characteristics. Estimation of errors (uncertainties) of linear calibration characteristics by application of the least square means method. Moscow: Goststandart, offic. ed. (In Russ.).

31. Jaulin L., Kieffer M., Didrit O., Walter E. Applied interval analysis. London: Springer-Verlag, 2001.

32. Shary S.P. Finite—dimensional interval analysis. URL: http://www.nsc.ru/interval/Library/InteBooks (accessed: 01.09.2019).

33. Kumkov S.I. An estimation problem of chemical process with confluent parameters: An interval approach. Reliable Comput. 2016. Vol. 22. P. 15—25.

34. Kumkov S.I., Mikushina Yu.V. Interval approach to identification of catalytic process parameters. Reliable Comput. 2014. Vol. 19. Iss. 2. P. 197—214.


Review

For citations:


Nikitin V.S., Ostanina T.N., Kumkov S.I., Rudoy V.M., Ostanin N.I. Determination of the growth time period of loose zinc deposit using interval analysis methods. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2020;(1):11-21. (In Russ.) https://doi.org/10.17073/1997-308X-2020-11-21

Views: 744


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)