Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Properties of the surface layer after high-energy treatment by powder particles

https://doi.org/10.17073/1997-308X-2020-29-35

Abstract

Experiments were conducted on high-energy surface treatment of a structural steel substrate with a flow of tungsten, nickel, and titanium nitride powder particles. The impact pressure of the steel target and particles accelerated by explosion energy was estimated using the momentum conservation equation and the linear equation of the particle material shock adiabat. It was found that the impact pressure of the target and particles is 62 GPa for a tungsten particle, 48 GPa for a nickel particle, and 41 GPa for a titanium nitride particle. The heating temperature of particles during their collision with the steel target surface was calculated taking into account the conditions of mass and momentum conservation at the shock wave front. The maximum heating temperature of particles at the point of their collision with the substrate surface (at a particle velocity of 2000 m/s) is 1103 K for tungsten particles, 755 K for nickel particles, and 589 K for titanium nitride particles. It was shown that the steel target strength increases when it is subjected to high-energy treatment with a flow of particles. The maximum hardening of the steel target surface layer increases by 32–55 % compared to initial microhardness and is observed at a depth of 2–4 mm from the treatment surface. Then it decreases to the value of starting material microhardness (170 HV) at a distance of 15–20 mm from the treated surface.

About the Authors

E. V. Petrov
Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)
Russian Federation

Petrov E.V. – Cand. Sci. (Tech.), senior research scientist of the Laboratory «Shock wave processes».

142432, Moscow region, Chernogolovka, Academician Osip’yan str., 8



I. V. Saikov
Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)
Russian Federation

Saikov I.V. – Cand. Sci. (Tech.), senior research scientist of the Laboratory «Shock wave processes».

142432, Moscow region, Chernogolovka, Academician Osip’yan str., 8



G. R. Saikova
Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)
Russian Federation

Saikova G.R. – Cand. Sci. (Tech.), senior research scientist of the Laboratory «Shock wave processes».

142432, Moscow region, Chernogolovka, Academician Osip’yan str., 8



V. S. Trofimov
Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)
Russian Federation

Trofimov V.S. – Dr. Sci. (Phys.-Math.), prof., leading research scientist of the Laboratory «Shock wave processes».

142432, Moscow region, Chernogolovka, Academician Osip’yan str., 8



References

1. Usherenko S.M. Ultra-deep penetration of particles into obstacles and the creation of composite materials. Minsk: NII IP s OP, 1998 (In Russ).

2. Andilevko S.K. Hydrodynamic model of superdeep penetration of absolutely solid axisymmetric particles into a seminfinite metal target. J. Eng. Phys. Thermophys. 1998. Vol. 71. Iss. 3. P. 393—397.

3. Usherenko S.M., Gushchin V.I., Dybov O.A. The results of the collision of the flow of microparticles with a metal target in super-deep penetration. Khimicheskaya fizika. 2002. Vol. 21. No. 9. P. 43—51 (In Russ.).

4. Kiselev S.P., Kiselev V.P. Superdeep penetration of particles into a metal target. Int. J. Impact Eng. 2002. Vol. 27. Iss. 2. P. 135—152.

5. Chengzhi Qi, Jianjie Chen. Physical mechanism of superdeep penetration of solid microparticles into solid targets. J. Mech. Behav. Mater. 2014. Vol. 23. Iss. 1—2. P. 21—26.

6. Panin V.E., Egorushkin V.E., Panin A.V. Physical mesomechanics of a deformable solid as a multilevel system. I. Physical foundations of a layered approach. Fizicheskaya mezomekhanika. 2006. Vol. 9. No. 3. P. 9—22 (In Russ.).

7. Panin V.E., Panin A.V., Moiseenko D.D., Shlyapin A.D., Avraamov Yu.S., Koshkin V.I. Physical mesomechanics of a deformable solid as a multilevel system. II. The phenomenon of mutual penetration of particles of dissimilar solids without disruption of continuity under the influence of concentrated energy flows. Fizicheskaya mezomekhanika. 2006. Vol. 9. No. 4. P. 5—13 (In Russ.).

8. Krestelev A.I. Modeling the process of entrainment of powder particles by explosive shock waves. Vestnik SamGTU. Ser. Fiziko-matematicheskie nauki. 2014. Vol. 35. No. 2. P. 125—129 (In Russ.).

9. Makarov P.V. Model of super-deep penetration of solid microparticles into metals. Fizicheskaya mezomekhanika. 2006. Vol. 9. No. 3. P. 61—70 (In Russ.).

10. Aleksentseva S.E., Krivchenko A.L. Investigation of the features of processing metals and alloys with a high-speed stream of discrete particles dispersed by the energy of the explosion of channel charges, and other dynamic methods. Vestnik SamGTU. Ser. Tekhnicheskie nauki. 2013. Vol. 38. No. 2. P. 71—78 (In Russ.).

11. Ganigin S.Yu., Kalashnikov V.V., Ibatullin I.D., Murzin A.Yu., Glazunova O.Yu., Grigor’ev A.A. High speed impact of solid microparticles and the substrate. Izvestiya Samarskogo nauchnogo tsentra RAN. 2013. Vol. 15. No. 4—2. P. 339342 (In Russ.).

12. Figovsky O.L., Gotlib E.M., Naumov S.V. On the physical effects occurring upon receipt of nanocomposites by methods of super-deep penetration. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2010. No. 11. P. 113—117 (In Russ.).

13. Khristoforov B.D. Research on influence of impact of microparticles and sewing needles on destruction of solid bodies. Eng. Trans. 2010. Vol. 58. No. 3—4. P. 131—138.

14. Marukovich E.I., Usherenko Yu.S. Peculiarities of structural changes in copper at dynamic alloying. Lit’e i Metallurgiya. 2012. Vol. 68. No. 4. P. 120—125 (In Russ.).

15. Korshunov L.G., Zeldovich V.I., Usherenko S.M., Kheifets A.E., Khomskaya I.V., Chernenko N.L., Frolova N.Yu. Superdeep penetration of the microparticles accelerated by explosion in metals and alloys of iron. Adv. Mater. Res. 2008. Vol. 47—50. P. 423—426.

16. Figovsky O.L., Usherenko S.M. Superdeep penetrationnovel method of nanoreinforced composites producing based on metallic, ceramic and polymer matrixes. Adv. Mater. Res. 2008. Vol. 79—82. P. 1975—1978.

17. Usherenko Yu., Usherenko S., Yazdani J. Composite materials for steel cutting and concrete crushing. Procedia Eng. 2017. No. 172. P. 1198—1203.

18. Marukovich E.I., Usherenko Yu.S., Usherenko S.M. Dynamic modification of aluminum and its alloy. Metallurgiya mashinostroeniya. 2017. No. 5. P. 11—19 (In Russ).

19. Dremin A.N., Savrov S.D., Trofimov V.S., Shvedov K.K. Detonation waves in condensed matter. Moscow: Nauka, 1970 (In Russ).

20. Andreev S.G., Babkin A.V., Baum F.A., Imkhovik N.A., Kobylkin I.F., Kolpakov V.I., Ladov S.V., Odintsov V.A., Orlenko L.P., Okhitin V.N., Selivanov V.V., Solov’ev V.S., Stanyukovich K.P., Chelyshev V.P., Shekhter B.I. Explosion physics. Vol. 2. Moscow: Fizmatlit, 2004 (In Russ).

21. Roman O.V., Andilevko S.K., Karpenko S.S., Romanov G.S., Shilkin V.A. Effect of superdeep penetration. State of the art and prospects. J. Eng. Phys. Thermophys. 2002. Vol. 75. Iss. 4. P. 997—1012.

22. Petrov E.V., Trofimov V.S. Evaluation of particle heating temperature during high-speed collision with target. Deformatsiya i razrushenie materialov. 2018. No. 3. P. 3841 (In Russ).


Review

For citations:


Petrov E.V., Saikov I.V., Saikova G.R., Trofimov V.S. Properties of the surface layer after high-energy treatment by powder particles. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2020;(1):29-35. (In Russ.) https://doi.org/10.17073/1997-308X-2020-29-35

Views: 790


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)