Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Application of metallization coatings for protection of submersible electric motors of pumping equipment from influence of complicating factors in oil wells

https://doi.org/10.17073/1997-308X-2020-75-86

Abstract

The paper provides a review of results obtained when using metallization coatings to protect the outer surface of electric centrifugal pump (ECP) equipment against the complicating factors in oil wells. Metallization coating is applied by thermal spraying using the method selected based on the chemical composition, materials used and properties of the finished coating. The most common coatings on the Russian market are Monel and alloys based on austenitic stainless steel applied by methods of electric arc metallization or high-speed spraying. Traditional coatings obtained by thermal spraying feature by insufficiently high level of physical, mechanical and chemical properties. The studies of failed cases of submersible motors show that most critical shortcomings of the coatings used include insufficient resistance to mechanical impact and abrasive wear, higher electrochemical potential in relation to the base metal, application technology violations, and significant coating porosity. One of the main reasons for the observed shortcomings is the limited number of traditionally used methods and materials. In order to solve the problem of using protective coatings for submersible motors, significantly improve their properties, service life and economic efficiency, it is necessary to use modern achievements of science in the development of coatings to protect metal surfaces from wear and corrosion, namely: to expand the number of methods and materials for coating application; to develop a methodology for coating quality assessment; to develop a methodology for assessing the economic efficiency of protective coatings. Solving these tasks will enable a reasonable technical and economic choice of a specific submersible motor coating for specific operating conditions.

About the Authors

Zh. V. Knyazeva
Samara State Technical University; LLC «NPC «Samara»
Russian Federation

postgraduate student, Department «Metallurgy, powder metallurgy, nanomaterials» (MPMN), Samara State Technical University, senior researcher of LLC «NPC «Samara»

443100, Samara, Molodogvardeiskaya str., 244
443022, Samara, Garage passage, 3E 



P. E. Yudin
Samara State Technical University; LLC «NPC «Samara»
Russian Federation

Cand. Sci. (Tech.), senior lecturer, Department of MPMN, Samara State Technical University, director of science of LLC «NPC «Samara»

443100, Samara, Molodogvardeiskaya str., 244
443022, Samara, Garage passage, 3E



S. S. Petrov
LLC «NPC «Samara»
Russian Federation

Cand. Sci. (Phys.-Math.), head of analytical Department

443022, Samara, Garage passage, 3E



A. V. Maksimuk
LLC «NPC «Samara»
Russian Federation

head manager

443022, Samara, Garage passage, 3E



References

1. Penyaev I.N. Analysis of failures of deep-well pumping equipment in conditions of high salt formation in oil production in the fields of Western Siberia: Bachelor’s work. Tomsk: TPU, 2019 (In Russ.).

2. Ivanovskii V.N. Corrosion of downhole equipment and methods of protection against it. Korroziya territorii neftegaz. 2011. No. 1. P. 18—25 (In Russ.).

3. Yalalov A.A. Methods of struggle with mechanical impurities. In: Science and modernity-2017: Mater. LII Int. Sci.-practical conf. «Science and modernity» (Novosibirsk, Apr. 21, 2017). Novosibirsk: Tsentr razvitiya nauchnogo sotrudnichestva, 2017. P. 139—144 (In Russ.).

4. Akopov E.Yu. Justification and selection of methods for increasing the service life of submersible centrifugal pumps: The dissertation of PhD. Moscow: MISIS, 2017 (In Russ.).

5. Aleksandrov A.A. Rogachev M.K. Improving the efficiency of operation of wells by an electrical submersible pump technology on hi-wax oil fields. In: Materials of the scientific session of scientists of Almetyevsk State Oil Institute. 2016. No. 1. Р. 32—34 (In Russ.).

6. Rogacheva E.V. Methods for controlling the complications associated with paraffin. Novaya nauka: ot idei k rezul’tatu. 2017. No. 1—3. Р. 40—42 (In Russ.).

7. Baiburin I.R., Bulyukova F.Z., Yamaliev V.U. Features of ESP operation in complicated conditions in LLC «RNStavropol’neftegaz. Neftegazovoe delo. 2011. No. 1. Р. 3134 (In Russ.).

8. Bulchaev N.D., Mintsaev M.Sh., Gairabekov I.G., Abumuslimov A.S. Mining technology using oil installations of electric centrifugal pumps in the harsh conditions (in case of Vankor Field). In: Engineering and earth sciences: Applied and fundamental research (ISEES 2018): Proc. Int. Symp. P. 436—446. https://doi.org/10.2991/isees-18.2018.83.

9. Daminov A.A. Corrosion of underground equipment for producing wells equipped by ESP. Territoriya neftegaz. 2009. No. 8. Р. 32—36 (In Russ.).

10. Romanov V.S., Gol’dshtein V.G., Vasil’eva N.S. Statistical analysis of technological violations in the operation of submersible motors. Trudy Kol’skogo nauchnogo tsentra RAN. 2018. No. 3—16 (9). Р. 114—121 (In Russ.).

11. Mukatdisov N.I., Farkhutdinova A.R., Elpidinskii A.A. Methods of combating corrosion and the benefits of inhibitory protection of oilfield equipment. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2014. No. 3. Р. 279—282 (In Russ.).

12. About cathodic protection of wells and submersible equipment. URL: http://ehz.su/index.php/publikatsii/item/49-o-katodnoj-zashchite-skvazhin-i-pogruzhnogooborudovaniya (accessed: 01.10.2019) (In Russ.).

13. Apasov T.K., Apasov G.T., Porozhnyakov D.V., Sarancha A.V. Protective corrosion protection in wells with ESP. Sovremennye problemy nauki i obrazovaniya. 2015. No. 2. Р. 283—291 (In Russ.).

14. Dzhabbarov Sh.N. Corrosion susceptibility of underground oil and gas equipment. In: Exact science: 18 Int. Sci. conf. «Tekhnokongress» (Kemerovo, 11 Dec. 2017). P. 3—7 (In Russ.).

15. Abdrakhmanov N.Kh., Turdymatov A.A., Abdrakhmanova K.N., Vorokhobko V.V. Safety of technological pipeline systems at the enterprises of the oil and gas complex. Neftegazovoe delo. 2015. No. 4. Р. 86—105 (In Russ.).

16. Lur’e A.Z. Application of thermal spray coatings to improve MTBF ESP. Inzhenernaya praktika. 2011. No. 04. Р. 78—81 (In Russ.).

17. Dorfman M.R. Thermal spray coatings. In.: Handbook of environmental degradation of materials. 3-rd ed. Eds. M. Kutz, W. Andrew. Applied Science Publ., 2018. P. 469—488. DOI: 10.1016/B978-0-323-52472-8.00023-X.

18. Oksa M., Turunen E., Suhonen T., Varis T., Hannula S.-P. Optimization and characterization of high velocity oxy-fuel sprayed coatings: techniques, materials, and applications. Coatings. 2011. No. 1. P. 17—52. DOI: 10.3390/coatings1010017.

19. Assadi H., Kreye H., Gartner F., Klassen T. Cold spraying. A materials perspective. Acta Mater. 2016. Vol. 116. P. 382—407. DOI: 10.1016/j.actamat.2016.06.034.

20. Lobanov L.M., Kardonina N.I., Rossina N.G. Yurovskikh A.S. Protective coatings. Ekaterinburg: Izd-vo Ural. un-ta, 2014 (In Russ.).

21. Pardo A., Merino M.C., Coy A.E., Viejo F., Arrabal R., Matykina E. Pitting corrosion behavior of austenitic stainless steels — combining effects of Mn and Mo additions. Corros. Sci. 2008. No. 50. P. 1796—1806. DOI: 10.1016/j.corsci.2008.04.005.

22. Tomio A., Sagara M., Doi T., Amaya H., Otsuka N., Kudo T. Role of alloyed molybdenum on corrosion resistance of austenitic Ni—Cr—Mo—Fe alloys in H 2 S—Clenvironments. Corros. Sci. 2015. No. 98. P. 391—398. http://dx.doi.org/10.1016/j.corsci.2015.05.053.

23. Zhang H., Zhang C.H., Wang Q.., Wu C.L., Zhang S., Chen J., Abdullah A.O. Effect of Ni content on stainless steel fabricated by laser melting deposition. Opt. Laser Technol. 2018. No. 101. P. 363—371. https://doi.org/10.1016/j.optlastec.2017.11.032.

24. Garcia-Rodriguez S., Lopez A.J., Torres B., Rams J. 316L stainless steel coatings on ZE41 magnesium alloy using HVOF thermal spray for corrosion protection. Surf. Coat. Techol. 2016. Vol. 287. P. 9—19. DOI: 10.1016/j.surfcoat.2015.12.075.

25. Sousa C.A.C., Kuri S.E. Relationship between niobium content and pitting corrosion resistance in ferritic stainless steels. Mater. Lett. 2004. No. 25. P. 57—60. DOI: 10.1016/0167-577X(95)00134-4.

26. Alonso-Falleiros N., Wolynec S. Effect of niobium on corrosion resistance to sulfuric acid of 430 ferritic stainless steel. Mater. Res. 1998. Vol. 1. No. 1. P. 39—45. DOI: 10.1590/S1516-14391998000100007.

27. Sarkar K., Rai P.K., Katiyar P.K. Composite (glass + crystalline) coatings from blast furnace pig iron by high velocity oxy-fuel (HVOF) process and their electrochemical behavior. Surf. Coat. Techol. 2019. No. 372. P. 72—83. DOI: 10.1016/j.surfcoat.2019.05/025.

28. Sousa C.A.C., Ribeiro D.V., Kiminami C.S. Corrosion resistance of Fe—Cr-based amorphous alloys: An overview. J. Non-Cryst. Solids. 2016. Vol. 442. P. 46—66. DOI: 10.1016/j.jnoncrysol.2016.04.009.

29. Syrek-Gerstenkorn B., Paul S., Davenport A.J. Use of thermally sprayed aluminium (TSA) coatings to protect offshore structures in submerged and splash zones. Surf. Coat. Techol. 2019. Vol. 374. P. 124—133. DOI: 10.1016/j.surfcoat.2019.04.048.

30. Spencer K., Fabijanic D.M., Zhang M.-X. The use of AlAl 2 O 3 cold spray coatings to improve the surface properties of magnesium alloys. Surf. Coat. Techol. 2009. Vol. 204. P. 336—344. DOI: 10.1016/j.surfcoat.2009.07.032.

31. Bu H., Yandouzi M., Lu C., Jodoin B. Effect of heat treatment on the intermetallic layer of cold sprayed aluminum coatings on magnesium alloy. Surf. Coat. Techol. 2011. Vol. 205. P. 4665—4671. DOI: 10.1016/j.surfcoat.2011.04.018.

32. Baldaev L.Kh., Borisov V.N., Vakhalin V.A., Zatoka A.E., Zakharov B.M. Thermal spraying: study guide. Ed. L.Kh. Baldaev. Moscow: OOO «Staraya Basmannaya», 2015 (In Russ.).

33. Levashov E.A., Shtansky D.V. Multifunctional nanostructured films. Uspekhi khimii. 2007. Vol. 76. No. 5. P. 501—509 (In Russ.).

34. Levashov E.A., Mukasyan A.S., Rogachev A.S., Shtansky D.V. Self-propagating high-temperature synthesis of advanced materials and coatings. Int. Mater. Reviews. 2017. Vol. 62. No. 4. P. 203—239. DOI: 10.1080/09506608.2016.1243291.

35. Amosov A.P. Nanomaterials of SHS technology for tribological applications: A review. Russ. J. Non-Ferr. Met. 2017. Vol. 58. No. 5. P. 530—539. DOI: 10.17073/1997-308X-2016-4-17-33.

36. Shtansky D.V., Bondarev A.V., Kiryukhantsev-Korneev F.V., Levashov E.A. Nanocomposite antifriction coatings for innovative tribotechnical systems. Metal. Sci. Heat Treat. 2015. Vol. 57. No. 7—8. P. 443—448.

37. Montemor M.F. Functional and smart coatings for corrosion protection: A review of recent advances. Surf. Coat. Techol. 2014. Vol. 258. P. 17—37. DOI: 10.1016/j.surfcoat.2014.06.031.

38. Knyazeva Zh.V., Yudin P.E., Amosov A.P., Petrov S.S., Maksimuk A.V. Classification of the submersible electric motors (SEM) metallization coating destruction causes during operation. Naukoemkie tekhnologii v mashinostroenii. 2019. No. 9. P. 25—32 (In Russ.). DOI: 10.30987/article_5d2df0884cc457.62830322.


Review

For citations:


Knyazeva Zh.V., Yudin P.E., Petrov S.S., Maksimuk A.V. Application of metallization coatings for protection of submersible electric motors of pumping equipment from influence of complicating factors in oil wells. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2020;(1):75-86. (In Russ.) https://doi.org/10.17073/1997-308X-2020-75-86

Views: 948


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)