Obtaining of Ti2AlC and Ti3AlC2 MAX phases by SHS with reduction stage
https://doi.org/10.17073/1997-308X-2020-36-40
Abstract
About the Authors
V. I. VershinnikovRussian Federation
Vershinnikov V.I. – Cand. Sci. (Tech.), leading research scientist of the Laboratory of self-propagating high-temperature synthesis.
142432, Moscow region, Chernogolovka, Academician Osip′yan str., 8
D. Yu. Kovalev
Russian Federation
Kovalev D.Yu. – Cand. Sci. (Tech.), head of the Laboratory of X-ray structural studies.
142432, Moscow region, Chernogolovka, Academician Osip′yan str., 8
References
1. Barsoum M.W. MAX phases: Properties of machinable ternary carbides and nitrides. 1st ed. Wiley-VCH Verlag GmbH & Co. KGaA, 2013.
2. Barsoum M.W., Bridkin D., Raghy T.E. Layered machinable ceramics for high temperature applications. Scr. Metall. Mater. 1997. Vol. 36. P. 535—539.
3. Barsoum M.W. The Мn+1АХ nphases: A new class of solids. Prog. Solid State Chem. 2000. Vol. 28. P. 201—281.
4. Radovic M., Barsoum M.W. MAX phases: Bridging the gap between metals and ceramics. Amer. Ceram. Soc. Bull. 2013. Vol. 92. No. 3. P. 20—27.
5. Rahman A., Rahaman Z. Study on structural, electronic, optical and mechanical properties of MAX phase compounds and applications. Amer. J. Mod. Phys. 2015. Vol. 4. No. 2. P. 75—91.
6. Tallman D.J., Anasori B., Barsoum M.W. A critical review of the oxidation of Ti 2 AlC, Ti3 AlC 2 and Cr 2 AlC in air. Mater. Res. Lett. 2013. Vol. 1. P. 115—125.
7. Poon B., Ponson L., Zhao J., Ravichandran G. Damage accumulation and hysteretic behavior of MAX phase materials. J. Mech. Phys. Solids. 2011. Vol. 59. P. 2238—2257.
8. Zhang H.B., Bao Y.W., Zhou Y.C. Current status in layered ternary carbide Ti3 SiC2 : A review. J. Mater. Sci. Technol. 2009. Vol. 25. No. 1. P. 1—38.
9. Barsoum M.W., Ali M., El-Raghy T. Processing and characterization of Ti 2 AlC, Ti 2 AlN, and Ti 2 AlC0.5 N0.5 . Metall. Mater. Trans. A. 2000. Vol. 31. P. 1857—1863.
10. Yan M., Chen Y., Mei B., Zhu J. Synthesis of high-purity Ti 2 AlN ceramic by hot pressing . Trans. Nonferr. Met. Soc. Chine. 2008. Vol. 18. No. 1. P. 82—85.
11. Luginina M.A., Kovalev D.Yu., Sytschev A.E. Preparation of Ti 2 AlN by reactive sintering. Int. J. SHS. 2016. Vol. 25. No. 1. P. 35—38.
12. Hong Xiao-lin, Mei Bing-chu, Zhu Jiao-qun, Zhou Weibing. Fabrication of Ti 2 AlC by hot pressing of Ti, TiC, Al and active carbon powder mixtures. J. Mater. Sci. 2004. Vol. 39. No. 5. P. 1589—1592.
13. Zhou W.B., Mei B.C., Zhu J.Q., Hong X.L. Rapid synthesis of Ti 2 AlC by spark plasma sintering technique. Mater. Lett. 2005. Vol. 5. P. 131—139.
14. Yi Liu, Shi Zh., Wang J., Qiao G., Jin Zh., Shen Zh. Reactive consolidation of layered-ternary Ti 2 AlN ceramics by spark plasma sintering of a Ti/AlN powder mixture. J. Eur. Ceram. Soc. 2011. Vol. 31. No. 5. P. 863—868.
15. Levashov E.A., Pogozhev Y.S., Shtansky D.V., Petrzhik M.I. Self-propagating high-temperature synthesis of ceramic materials based on the MAX phases in the Ti—CrAl—C system. Russ. J. Non-Ferr. Met. 2009. Vol. 50. No. 2. Р. 151—159.
16. Hendaoui A., Andasmas M., Benaldjia A., Langlois P., Vrel D. SHS of high-purity MAX compounds in the Ti—Al—C system. Int. J. SHS. 2008. Vol. 17. No. 2. Р. 129—136.
17. Vadchenko S.G., Sytschev A.E., Kovalev D.Yu., Shukin A.S, Belikova A.F. SHS of MAX compounds in the Ti—Si—C system: influence of mechanical activation. Int. J. SHS. 2014. Vol. 23. No. 3. P. 141—144.
18. Thomas T., Bowen C. Effect of particle size on the formation of Ti 2 AlC using combustion synthesis. Ceram. Int. 2016. Vol. 42. P. 4150—4157.
19. Bazhin P.M., Kovalev D.Yu., Luginina M.A., Averichev O.A. Combustion of Ti—Al—C compacts in air and helium: A TRXRD study. Int. J. SHS. 2016. Vol. 25. No 1. Р. 30—34.
20. Bai Y., He X., Li Y., Zhu C., Zhang S. Rapid synthesis of bulk Ti 2 AlC by self-propagating high temperature combustion synthesis with a pseudo—hot isostatic pressing process. J. Mater. Res. 2009. Vol. 24. No. 8. P. 2528—2535. DOI: 10.1557/jmr.2009.0327.
21. Yeh C.L., Kuo C.W., Chu Y.C. Formation of Ti3AlC2/Al2O3 and Ti 2 AlC/Al2 O 3 composites by combustion synthesis in Ti—Al—C—TiO 2 systems. J. Alloys Compd. 2010. Vol. 494. P. 132—136.
Review
For citations:
Vershinnikov V.I., Kovalev D.Yu. Obtaining of Ti2AlC and Ti3AlC2 MAX phases by SHS with reduction stage. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2020;(1):36-40. (In Russ.) https://doi.org/10.17073/1997-308X-2020-36-40