Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Obtaining of Ti2AlC and Ti3AlC2 MAX phases by SHS with reduction stage

https://doi.org/10.17073/1997-308X-2020-36-40

Abstract

The paper focuses on obtaining Ti2AlC and Ti3AlC2 MAX phase powders by self-propagating high-temperature synthesis (SHS) from oxide raw materials using magnesium-thermal reduction. The source of titanium was its oxide TiO2 with magnesium used as a reducing agent. Cleaning from magnesium oxide was conducted in hydrochloric acid solution with a concentration of 1:3 at t = 70 °C. The yield of the target product in magnesium thermal reduction is 35–40 %. It was found that the synthesis product consisted of Ti2AlC, MgAl2O4 and TiC after chemical leaching in hydrochloric acid at the stoichiometric ratio of components. MgAl2O4 spinel was formed due to the lack of magnesium reducing agent in the green mixture, while some part of aluminum reacted with titanium oxide reducing it and forming Al2O3 . It led to MgO·Al2O3 formation. An increase in the excess magnesium content in the green mixture from 20 wt.% to 30 wt.% leads to the complete reduction of titanium from its oxide by magnesium with the formation of Ti2AlC MAX phase and titanium carbide. A decrease in carbon content by 10 wt.% in the green mixture leads to a decrease in titanium carbide content to 4 %. With an excess content of soot from 20 % to 35 %, a product containing Ti3AlC2 , Ti2AlC and TiC MAX phases is formed, and the mass fraction of Ti3AlC2 increases from 86 % to 89 %, respectively. The resulting powders are agglomerates consisting of thin plates of 70–100 nm thick MAX phases. 87 % of such agglomerates are less than 65 μm in size.

About the Authors

V. I. Vershinnikov
Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)
Russian Federation

Vershinnikov V.I. – Cand. Sci. (Tech.), leading research scientist of the Laboratory of self-propagating high-temperature synthesis.

142432, Moscow region, Chernogolovka, Academician Osip′yan str., 8



D. Yu. Kovalev
Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences (ISMAN)
Russian Federation

Kovalev D.Yu. – Cand. Sci. (Tech.), head of the Laboratory of X-ray structural studies.

142432, Moscow region, Chernogolovka, Academician Osip′yan str., 8



References

1. Barsoum M.W. MAX phases: Properties of machinable ternary carbides and nitrides. 1st ed. Wiley-VCH Verlag GmbH & Co. KGaA, 2013.

2. Barsoum M.W., Bridkin D., Raghy T.E. Layered machinable ceramics for high temperature applications. Scr. Metall. Mater. 1997. Vol. 36. P. 535—539.

3. Barsoum M.W. The Мn+1АХ nphases: A new class of solids. Prog. Solid State Chem. 2000. Vol. 28. P. 201—281.

4. Radovic M., Barsoum M.W. MAX phases: Bridging the gap between metals and ceramics. Amer. Ceram. Soc. Bull. 2013. Vol. 92. No. 3. P. 20—27.

5. Rahman A., Rahaman Z. Study on structural, electronic, optical and mechanical properties of MAX phase compounds and applications. Amer. J. Mod. Phys. 2015. Vol. 4. No. 2. P. 75—91.

6. Tallman D.J., Anasori B., Barsoum M.W. A critical review of the oxidation of Ti 2 AlC, Ti3 AlC 2 and Cr 2 AlC in air. Mater. Res. Lett. 2013. Vol. 1. P. 115—125.

7. Poon B., Ponson L., Zhao J., Ravichandran G. Damage accumulation and hysteretic behavior of MAX phase materials. J. Mech. Phys. Solids. 2011. Vol. 59. P. 2238—2257.

8. Zhang H.B., Bao Y.W., Zhou Y.C. Current status in layered ternary carbide Ti3 SiC2 : A review. J. Mater. Sci. Technol. 2009. Vol. 25. No. 1. P. 1—38.

9. Barsoum M.W., Ali M., El-Raghy T. Processing and characterization of Ti 2 AlC, Ti 2 AlN, and Ti 2 AlC0.5 N0.5 . Metall. Mater. Trans. A. 2000. Vol. 31. P. 1857—1863.

10. Yan M., Chen Y., Mei B., Zhu J. Synthesis of high-purity Ti 2 AlN ceramic by hot pressing . Trans. Nonferr. Met. Soc. Chine. 2008. Vol. 18. No. 1. P. 82—85.

11. Luginina M.A., Kovalev D.Yu., Sytschev A.E. Preparation of Ti 2 AlN by reactive sintering. Int. J. SHS. 2016. Vol. 25. No. 1. P. 35—38.

12. Hong Xiao-lin, Mei Bing-chu, Zhu Jiao-qun, Zhou Weibing. Fabrication of Ti 2 AlC by hot pressing of Ti, TiC, Al and active carbon powder mixtures. J. Mater. Sci. 2004. Vol. 39. No. 5. P. 1589—1592.

13. Zhou W.B., Mei B.C., Zhu J.Q., Hong X.L. Rapid synthesis of Ti 2 AlC by spark plasma sintering technique. Mater. Lett. 2005. Vol. 5. P. 131—139.

14. Yi Liu, Shi Zh., Wang J., Qiao G., Jin Zh., Shen Zh. Reactive consolidation of layered-ternary Ti 2 AlN ceramics by spark plasma sintering of a Ti/AlN powder mixture. J. Eur. Ceram. Soc. 2011. Vol. 31. No. 5. P. 863—868.

15. Levashov E.A., Pogozhev Y.S., Shtansky D.V., Petrzhik M.I. Self-propagating high-temperature synthesis of ceramic materials based on the MAX phases in the Ti—CrAl—C system. Russ. J. Non-Ferr. Met. 2009. Vol. 50. No. 2. Р. 151—159.

16. Hendaoui A., Andasmas M., Benaldjia A., Langlois P., Vrel D. SHS of high-purity MAX compounds in the Ti—Al—C system. Int. J. SHS. 2008. Vol. 17. No. 2. Р. 129—136.

17. Vadchenko S.G., Sytschev A.E., Kovalev D.Yu., Shukin A.S, Belikova A.F. SHS of MAX compounds in the Ti—Si—C system: influence of mechanical activation. Int. J. SHS. 2014. Vol. 23. No. 3. P. 141—144.

18. Thomas T., Bowen C. Effect of particle size on the formation of Ti 2 AlC using combustion synthesis. Ceram. Int. 2016. Vol. 42. P. 4150—4157.

19. Bazhin P.M., Kovalev D.Yu., Luginina M.A., Averichev O.A. Combustion of Ti—Al—C compacts in air and helium: A TRXRD study. Int. J. SHS. 2016. Vol. 25. No 1. Р. 30—34.

20. Bai Y., He X., Li Y., Zhu C., Zhang S. Rapid synthesis of bulk Ti 2 AlC by self-propagating high temperature combustion synthesis with a pseudo—hot isostatic pressing process. J. Mater. Res. 2009. Vol. 24. No. 8. P. 2528—2535. DOI: 10.1557/jmr.2009.0327.

21. Yeh C.L., Kuo C.W., Chu Y.C. Formation of Ti3AlC2/Al2O3 and Ti 2 AlC/Al2 O 3 composites by combustion synthesis in Ti—Al—C—TiO 2 systems. J. Alloys Compd. 2010. Vol. 494. P. 132—136.


Review

For citations:


Vershinnikov V.I., Kovalev D.Yu. Obtaining of Ti2AlC and Ti3AlC2 MAX phases by SHS with reduction stage. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2020;(1):36-40. (In Russ.) https://doi.org/10.17073/1997-308X-2020-36-40

Views: 1333


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)