Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Nanoscale nickel containing powders for use in CO and NO2 gas sensors

https://doi.org/10.17073/1997-308X-2020-65-74

Abstract

The study covers physicochemical characteristics and gas sensitivity mechanisms of nickel oxide (NiO) and nickel ferrite (NiFe2O4) obtained by levitation-jet synthesis. The properties of synthesized materials were studied using various spectroscopic methods. XPS showed that the presence of Ni3+ ions in samples decreased significantly with an increase in the specific surface area of the powders and decrease in the average diameter of their particles. In this regard, it can be concluded that the number of uncompensated Ni2+ vacancies in such samples also decreases, and concentration of O2– vacancies, on the contrary, increases significantly. The Raman spectra of nanoscale NiO lacked the magnon band, which is usually observed at ν = 1500 cm–1 , whereas the spectrum of nanoferrite sample had a pronounced 2M band, which indicates an increase in spin correlation. According to the analysis of UV spectra of the samples obtained, there is an increase in reflectivity values with an increase in wavelength for large nanoparticles compared to the corresponding values for small particles. In this regard, we assumed that Ni-based oxide nanoparticles are semiconductors with an indirect transition to band gap energy, and this is in sharp contrast to the data obtained earlier by other researchers. Gas sensitivity of nanoscale powders was investigated in relation to carbon monoxide and nitrogen dioxide at operating temperatures of 350–500 °C. Evaluation of the obtained results allowed us to conclude that the operating characteristics of sensors proposed by us are superior in a number of parameters to the similar characteristics of sensors made of commercial powders, as well as of powders obtained by other synthetic methods.

About the Authors

M. V. Kuznetsov
All-Russian Research Institute on Problems of Civil Defense and Emergencies of Emergency Control Ministry of Russia
Russian Federation

Dr. Sci. (Chem.), principal research scientist of the 9-th Research-Scientific Centre

121352, Moscow, Davydkovskaya str., 7



A. V. Safonov
All-Russian Research Institute on Problems of Civil Defense and Emergencies of Emergency Control Ministry of Russia
Russian Federation

research scientist of the 4-th Research-Scientific Centre

121352, Moscow, Davydkovskaya str., 7



D. A. Bobreshov
All-Russian Research Institute on Problems of Civil Defense and Emergencies of Emergency Control Ministry of Russia
Russian Federation

research scientist of the 4-th Research-Scientific Centre

121352, Moscow, Davydkovskaya str., 7



O. V. Belousova
Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science of the Russian Academy of Sciences (ISMAN)
Russian Federation

engineer-researcher of Laboratory No. 8

142432, Moscow region, Chernogolovka, Academician Osip’yan str., 8



Iu. G. Morozov
Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science of the Russian Academy of Sciences (ISMAN)
Russian Federation

Dr. Sci. (Phys.-Math.), leading research scientist of Laboratory No. 14

142432, Moscow region, Chernogolovka, Academician Osip’yan str., 8



References

1. Rumyantseva M.N., Kovalenko V.V., Gas’kov A.M., Pagnier T. Metal-oxide based nanocomposites as materials for gas sensors. Russ. J. Gen. Chem. 2008. Vol. 78. No. 5. P. 10811092. DOI: 10.1134/S1070363208050411.

2. Dey A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B. 2018. Vol. 229. P. 206—217. DOI: 10.1016/j.mseb.2017.12.036.

3. Williams D.E. Semiconducting oxides as gas-sensitive resistors. Sens. Actuators, B: Chem. 1999. Vol. 57. No. 1—3. P. 1—16. DOI: 10.1016/S0925-4005(99)00133-1.

4. Binions R., Afonja A., Dungey S., Lewis D.E., Parkin I.P., Williams D.E. Discrimination effects in zeolite modified metal oxide semiconductor gas sensors. IEEE Sens. J. 2011. Vol. 11. No. 5. P. 1145—1151. DOI: 10.1109/JSEN.2010.2084079.

5. Lee P.Y., Ishizaka K., Suematsu H., Jiang W., Yatsui K. Magnetic and gas sensing property of nanosized NiFe 2 O4 powders synthesized by pulsed wire discharge. J. Nanopart. Res. 2006. Vol. 8. No. 1. P. 29—35. DOI: 10.1007/s11051-005-5427-z.

6. Ju D., Xu H., Xu Q., Gong H., Qiu Z., Guo J. High triethylamine-sensing properties of NiO/SnO 2 hollow sphere P—N heterojunction sensors. Sens. Actuators, B: Chem. 2015. Vol. 215. P. 39—44. DOI: 10.1016/j.snb.2015.03.015.

7. Arshak K., Gaidan I. NiO/Fe2 O 3 polymer thick films as room temperature gas sensors. Thin Solid Films. 2006. Vol. 495. No. 1—2. P. 286—291. DOI: 10.1016/j.tsf.2005.08.298.

8. Darshane S.L., Suryavanshi S.S., Mulla I.S. Nanostructured nickel ferrite: A liquid petroleum gas sensor. Ceram. Int. 2009. Vol. 35. No. 5. P. 1793—1797. DOI: 10.1016/j.ceramint.2008.10.013.

9. Ortega D., Kuznetsov M.V., Morozov Yu.G., Belousova O.V., Parkin I.P. Thermal relaxation and collective dynamics of interacting aerosol-generated hexagonal NiFe2 O 4 nanoparticles. Phys. Chem. Chem. Phys. 2013. Vol. 15. No. 48. P. 20830—20838. DOI: 10.1039/c3cp53981d.

10. Chen N.-S., Yang X.-J., Liu E.-S., Huang J.-L. Reducing gas-sensing properties of ferrite compounds MFe2 O 4 (M = = Cu, Zn, Cd and Mg). Sens. Actuators, B: Chem. 2000. Vol. 66. No. 1—3. P. 178—180. DOI: 10.1016/S0925-4005(00)00368-3.

11. Chen D.-H., He X.-R. Synthesis of nickel ferrite nanoparticles by sol-gel method. Mater. Res. Bull. 2001. Vol. 36. No. 7—8. P. 1369—1377. DOI: 10.1016/S00255408(01)00620-1.

12. Liu J., He H., Jin X., Hao Z., Xu Z. Synthesis of nanosized nickel ferrites by shock waves and their magnetic properties. Mater. Res. Bull. 2001. Vol. 36. No. 3—14. P. 23572363. DOI: 10.1016/S0025-5408(01)00722-X.

13. Suematsu H., Ishizaka K., Kinemuchi Y., Suzuki T., Jiang W., Yatsui K. Novel critical temperature resistor of sintered Ni—Fe—O nanosized powders. J. Mater. Res. 2004. Vol. 19. No. 4. P. 1011—1014. DOI: 10.1557/JMR.2004.0131.

14. Ortega D., Kuznetsov M.V., Morozov Yu.G., Belousova O.V., Parkin I.P. Thermal relaxation and collective dynamics of interacting aerosol-generated hexagonal NiFe2 O 4 nanoparticles. Phys. Chem. Chem. Phys. 2013. Vol. 15. No. 48. P. 20830—20838. DOI: 10.1039/c3cp53981d.

15. Gen M.Ya., Miller A.V. Levitation method of producing ultrafine metal powders. Poverkhnost’. 1983. No. 2. P. 150154 (In Russ.).

16. Kondrat’eva T.A., Morozov Y.G., Chernov E.A. Effect of conditions of manufacture on the properties of ultrafine nickel powder. Soviet. Powder Metallurgy Metal. Ceram. 1987. Vol. 26. No. 10. P. 793—795. DOI: 10.1007/BF00794359.

17. Krasnov A.P., Morozov Y.G., Chernov E.A. Characteristic features of the vaporization mechanism in the crucible-free production of aerosol particles. Powder Technol. 1994. Vol. 81. No. 1. P. 93—98. DOI: 10.1016/0032-5910(94)02871-0.

18. Morozov Y.G., Belousova O.V., Kuznetsov M.V., Ortega D., Parkin I.P. Electric field-assisted levitation-jet aerosol synthesis of Ni/NiO nanoparticles. J. Mater. Chem. 2012. Vol. 22. No. 22. P. 11214—11223. DOI: 10.1039/c2jm31233f.

19. Binions R., Davies H., Afonja A., Dungey S., Lewis D., Williams D.E., Parkin I.P. Zeolite-modified discriminating gas sensors. J. Electrochem. Soc. 2009. Vol. 156. No. 3. P. J46—J51. DOI: 10.1149/1.3065436.

20. Peveler W.J., Binions R., Hailes S.M.V., Parkin I.P. Detection of explosive markers using zeolite modified gas sensors. J. Mater. Chem. A. 2013. Vol. 1. No. 17. P. 2613—2620. DOI: 10.1039/c2ta01027e.

21. Tarttelin Hernández P., Naik A.J.T., Newton E.J., Hailes S.M.V., Parkin I.P. Assessing the potential of metal oxide semiconducting gas sensors for illicit drug detection markers. J. Mater. Chem. A. 2014. Vol. 2. No. 23. P. 8952—8960. DOI: 10.1039/c4ta00357h.

22. Costa A.C.F.M., Lula R.T., Kiminami R.H.G.A., Gama L.F.V., de Jesus A.A., Andrade H.M.C. Preparation of nanostructured NiFe 2 O 4 catalysts by combustion reaction. J. Mater. Sci. 2006. Vol. 41. No. 15. P. 4871—4875. DOI: 10.1007/s10853-006-0048-1.

23. Madhu G., Biju V. Nanostructured amorphous nickel oxide with enhanced anti- oxidant activity. J. Alloys Compd. 2015. Vol. 637. P. 62—69. DOI: 10.1016/j.jallcom.2015.02.157.

24. Biju V. Ni 2p X-ray photoelectron spectroscopy study of nanostructured nickel oxide. Mater. Res. Bull. 2007. Vol. 42. No. 5. P. 791—796. DOI: 10.1016/j.materresbull.2006.10.009.

25. Mironova-Ulmane N., Kuzmin A., Sildos I., Pärs M. Polarisation dependent Raman study of single-crystal nickel oxide. Cent. Eur. J. Phys. 2011. Vol. 9. No. 4. P.1096—1099. DOI: 10.2478/s11534-010-0130-9.

26. Tadic M., Panjan M., Markovic D., Stanojevic B., Jovanovic D., Milosevic I., Spasojevic V. NiO core—shell nanostructure with ferromagnetic-like behavior at room temperature. J. Alloys Compd. 2014. Vol. 586. Suppl. 1. P. S322—S325. DOI: 10.1016/j.jallcom.2012.10.166.

27. Simmons E.L. Diffuse reflectance spectroscopy: a comparison of the theories. Appl. Opt. 1975. Vol. 14. No. 6. P. 1380—1386. DOI: 10.1364/AO.14.001380.

28. Rehman S., Mumtaz A., Hasanain S.K. Size effects on the magnetic and optical properties of CuO nanoparticles. J. Nanopart. Res. 2011. Vol. 13. No. 6. P. 2497—2507. DOI: 10.1007/s11051-010-0143-8.

29. Lin H., Huang C.P., Li W., Ismat Shah S., Tseng Y.-H. Size dependency of nano-crystalline TiO 2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl. Catal., B: Environ. 2006. Vol. 68. No. 1—2. P. 1—11. DOI: 10.1016/j.apcatb.2006.07.018.

30. Jaaniso R., Kian Tan O. (Eds.). Semiconductor gas sensors.1-st ed. Oxford: Woodhead Publishing, 2013.

31. Gurlo A., Riedel R. In situ and operando spectroscopy for assessing mechanisms of gas sensing. Angew. Chem. 2007. Vol. 46. P. 3826—3848. DOI: 10.1002/anie.200602597.

32. Chu X., Dongli J., Chenmou Z. The preparation and gas-sensing properties of NiFe2 O 4 nanocubes and nanorods. Sens. Actuators, B: Chem. 2007. Vol. 123. No. 2. P. 793—797. DOI: 10.1016/j.snb.2006.10.020.

33. Sutka A., Gross A. Spinel ferrite oxide semiconductor gas sensors. Sens. Actuators, B: Chem. 2016. Vol. 222. P. 95—105. DOI: 10.1016/j.snb.2015.08.027.

34. Yang L., Xie Y., Zhao H., Wu X., Wang Y. Preparation and gas-sensing properties of NiFe2 O 4 semiconductor materials. Solid State Electron. 2005. Vol. 49. No. 6. P. 10291033. DOI: 10.1016/j.sse.2005.03.022.

35. Choi J., Byun J., Sub S. Chemical Influence of grain size on gas-sensing properties of chemiresistive p-type NiO nanofibers. Sens. Actuators, B: Chem. 2016. Vol. 227. P. 149—156. DOI: 10.1016/j.snb.2015.12.014.

36. Kruefu V., Wisitsoraat A., Phokharatkul D., Tuantranont A., Phanichphant S. Chemical enhancement of p-type gassensing performances of NiO nanoparticles prepared by precipitation with RuO 2 impregnation. Sens. Actuators, B: Chem. 2016. Vol. 236. No. 2. P. 466—473. DOI: 10.1016/j.snb.2016.06.028.


Review

For citations:


Kuznetsov M.V., Safonov A.V., Bobreshov D.A., Belousova O.V., Morozov I.G. Nanoscale nickel containing powders for use in CO and NO2 gas sensors. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2020;(1):65-74. (In Russ.) https://doi.org/10.17073/1997-308X-2020-65-74

Views: 750


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)