Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Features of synthesizing ceramic composites discretely reinforced by carbon fibers and SiC nanowires formed in situ in the combustion wave

https://doi.org/10.17073/1997-308X-2020-41-54

Abstract

A new method is proposed for the engineering of SiC-based ceramic-matrix composite materials strengthened by discrete carbon fibers and single-crystal silicon carbide nanowires. Depending on the macrokinetic characteristics of the combustion process, either diffusion layers, particles of silicon carbide or silicon csrbide nanowires with a diameter of 10–50 nm and a length of 15–20 μm can be formed on the surface of carbon fibers. The sequence of chemical transformations and structure formation in the combustion wave of Si–C–C2F4 and Si–C–C2F4–Ta mixtures was studied. Silicon carbide nanowires formed in the combustion wave had high crystallinity and a defect-free TaSi2/SiC interface. The misorientation of the lattices at the interface is about 6 %. Nanowires are able to relax the mechanical stresses during growth via the rotation along the growth direction. The optimal combustion temperature for the growth of silicon carbide nanofibers is 1700 K at a ratio of C2F4 : C = 2. The lower temperature threshold for the growth of silicon carbide nanowires is caused by a decrease in the yield of reactive fluorides, while the upper temperature threshold is caused by a failure of the adsorption blocking mechanism on the surface of the nanofibers and the destabilization of the TaSi2 + Si eutectic droplet. Composites with a SiC–TaSi2 ceramic matrix and a relative density of 98 %, a hardness of 19 GPa, a flexural strength of 420 MPa, and a fracture toughness of 12.5 MPa·m1/2 were obtained by hot pressing An increase in the strength of the carbon fiber-matrix interface has manifested in the suppression of carbon fiber pull-out from the matrix.

About the Authors

S. Vorotilo
National University of Science and Techniligy (NUST) «MISIS»
Russian Federation

Vorotilo S. – postgraduate student of the Department of powder metallurgy and functional coatings (PM&FC).

119049, Moscow, Leninskii pr., 4



E. A. Levashov
National University of Science and Techniligy (NUST) «MISIS»
Russian Federation

Levashov E.A. – Dr. Sci. (Tech.), prof., acad. of Russian Academy of Natural Science, chair of the Department of PM&FC, , head of the Scientific-Educational Centre of SHS of MISIS–ISMAN

119049, Moscow, Leninskii pr., 4



A. Yu. Potanin
National University of Science and Techniligy (NUST) «MISIS»
Russian Federation

Potanin A.Yu. – Cand. Sci. (Tech.), research scientist of the Scientific-Educational Centre of SHS of MISIS–ISMAN.

119049, Moscow, Leninskii pr., 4



P. A. Loginov
National University of Science and Techniligy (NUST) «MISIS»
Russian Federation

Loginov P.A. – Cand. Sci. (Tech.), research scientist of the Scientific-Educational Centre of SHS of MISIS–ISMAN.

119049, Moscow, Leninskii pr., 4



N. V. Shvyndina
National University of Science and Techniligy (NUST) «MISIS»
Russian Federation

Shvyndina N.V. – engineer of the Scientific-Educational Centre of SHS of MISIS–ISMAN.

119049, Moscow, Leninskii pr., 4



References

1. Yang W., Araki H., Tang C., Thaveethavorn S., Kohyama A., Suzuki H., Noda T. Single-crystal SiC nanowires with a thin carbon coating for stronger and tougher ceramic composites. Adv. Mater. 2005. Vol. 17. Iss. 12. P. 1519—1523.

2. Marshall D.B., Evans A.G. Failure mechanisms in ceramic-fiber/ceramic-matrix composites. J. Am. Ceram. Soc. 1985. Vol. 68. Iss. 5. P. 225—231.

3. Infed F., Handrick K., Lange H., Steinacher A., Weiland S., Wegmann C. Development of thermal protective seal for hot structure control surface actuator rod. Acta Astronautica. 2012. Vol. 70. P. 122—138.

4. Christin F. CMC materials for space и aeronautical applications. Ed. W. Krenkel. In: Ceramic Matrix Composites. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. Р. 327—351.

5. Evans A.G., Marshall D.B. Overview no. 85. The mechanical behavior of ceramic matrix composites. Acta Metall. 1989. Vol. 37. Iss. 10. P. 2567—2583.

6. Becher P.F., Hsueh C.-H., Angelini P., Tiegs T.N. Toughening behavior in whisker-reinforced ceramic matrix composites. J. Am. Ceram. Soc. 1988. Vol. 71. Iss. 12. P. 10501061.

7. Vedrtnam A., Sharma S.P. Study on the performance of different nano-species used for surface modification of carbon fiber for interface strengthening. Composites, A: Appl. Sci. Manuf. 2019. Vol. 125. DOI: 10.1016/j.compositesa.2019.105509.

8. Schneck T.K., Brück B., Schulz M., Spörl J.M., Hermanutz F., Clauß B., Mueller W.M., Heidenreich B., Koch D., Horn S., Buchmeiser M.R. Carbon fiber surface modification for tailored fiber-matrix adhesion in the manufacture of C/C—SiC composites. Composites, A: Appl. Sci. Manuf. 2019. Vol. 120. P. 64—72.

9. Tiwari S., Bijwe J. Surface treatment of carbon fibers: A review. Procedia Technol. 2014. Vol. 14. P. 505—512.

10. Wang Z., Huang X., Xian G., Li H. Effects of surface treatment of carbon fiber: Tensile property, surface characteristics, and bonding to epoxy. Polymer Composites. 2016. Vol. 37. Iss. 10. P. 2921—2932.

11. Park S.-J., Meng L.-Y. Surface treatment and sizing of carbon fibers. Carbon Fibers. 2014. P. 101—133.

12. Zhang X., Li S., Pan D., Pan B., Kondoh K. Microstructure and synergistic-strengthening efficiency of CNT s -SiCp dual-nano reinforcements in aluminum matrix composites. Composites, A: Appl. Sci. Manuf. 2018. Vol. 105. P. 87—96.

13. He F., Liu Y., Tian Z., Zhang C., Ye F., Cheng L., Zhang L. Carbon fiber/SiC composites modified SiC nanowires with improved strength and toughness. Mater. Sci. Eng. A. 2018. Vol. 734. P. 374—384.

14. Wang H.-f., Bi Y.-b., Zhou N.-s., Zhang H.-j. Preparation and strength of SiC refractories with in situ β-SiC whiskers as bonding phase. Ceram. Int. 2016. Vol. 42. Iss. 1. P. 727—733.

15. Li J., Sha J., Dai J., Lv Z., Shao J., Wang S., Zhang Z. Fabrication and characterization of carbon-bonded carbon fiber composites with in-situ grown SiC nanowires. Carbon. 2017. Vol. 118. P. 148—155.

16. Fu Q., Wang L., Tian X., Shen Q. Effects of thermal shock on the microstructures, mechanical and thermophysical properties of SiCnfs -C/C composites. Composites, B: Eng. 2019. Vol. 164. P. 620—628.

17. He F., Liu Y., Tian Z., Zhang C., Ye F., Cheng L., Zhang L. Improvement of the strength and toughness of carbon fiber/SiC composites via chemical vapor infiltrationgrown SiC nanowire interphases. Ceram. Int. 2018. Vol. 44. Iss. 2. P. 2311—2319.

18. Kolasinski K.W. Catalytic growth of nanowires: Vaporliquid-solid, vapor-solid-solid, solution-liquid-solid and solid-liquid-solid growth. Curr. Opin. Solid State Mater. Sci. 2006. Vol. 10. Iss. 3-4. P. 182—191.

19. Nersisyan G.A., Nikogosov V.N., Kharatyan S.L., Merzhanov A.G. Chemical transformation mechanism and combustion regimes in the system silicon-carbon-fluoroplastic. Combust. Explos. Shock Waves. 1991. Vol. 27. Iss. 6. P. 720—724.

20. Duus H.C. Thermochemical studies on fluorocarbons. Heat of formation of CF4 , C2 F4 , C3 F6 , C2 F 4 dimer, and C2 F 4 polymer. Ind. Eng. Chem. 1955. Vol. 47. Iss. 7. P. 1445—1449.

21. Levashov E.A., Mukasyan A.S., Rogachev A.S., Shtansky D.V. Self-propagating high-temperature synthesis of advanced materials and coatings. Int. Mater. Rev. 2017. Vol. 62. Iss. 4. P. 203—239.

22. Concise encyclopedia of combustion synthesis: Нistory, theory, technology, and products. Eds I. Borovinskaya, A. Gromov, E. Levashov, Yu. Maksimov, A. Mukasyan, A. Rogachev. Elsevier, 2017.

23. Sciti D., Silvestroni L., Celotti G., Melandri C., Guicciardi S. Sintering and mechanical properties of ZrB2 —TaSi 2 and HfB2 —TaSi 2 ceramic composites. J. Am. Ceram. Soc. 2008. Vol. 91. Iss. 10. P. 3285—3291.

24. Talmy I.G., Zaykoski J.A., Opeka M.M. High-temperature chemistry and oxidation of ZrB 2 ceramics containing SiC, Si3 N4 , Ta5 Si3 , and TaSi2 . J. Am. Ceram. Soc. 2008. Vol. 91. Iss. 7. P. 2250—2257.

25. Xiaohong S., Xierong Z., Hejun L., Qiangang F., Jizhao Z. TaSi 2 oxidation protective coating for SiC coated carbon/ carbon composites. Rare Metal Mater. Eng. 2011. Vol. 40. Iss. 3. P. 403—406.

26. Peng F., Speyer R.F. Oxidation Resistance of fully dense ZrB 2 with SiC, TaB2 , and TaSi 2 additives. J. Am. Ceram. Soc. 2008. Vol. 91. Iss. 5. P. 1489—1494.

27. Du B., Hong C., Qu Q., Zhou S., Liu C., Zhang X. Oxidative protection of a carbon-bonded carbon fiber composite with double-layer coating of MoSi2 —SiC whisker and TaSi2 —MoSi2 —SiC whisker by slurry method. Ceram. Int. 2017. Vol. 43. Iss. 12. P. 9531—9537.

28. Wang S., Xu C., Ding Y., Zhang X. Thermal shock behavior of ZrB2 —SiC composite ceramics with added TaSi2 . Int. J. Refract. Met. Hard Mater. 2013. Vol. 41. P. 507—516.

29. Xia M., Ge C. Morphological control of tungsten-assisted β-Si3 N 4 nanowhiskers: Synthesis, mechanical and photoluminescence properties. Chem. Phys. Lett. 2012. Vol. 525—526. P. 92—96.

30. Wagner R.S., Ellis W.C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964. Vol. 4. Iss. 5. P. 89—90.

31. Ishiyama T., Nakagawa S., Wakamatsu T. Growth of epitaxial silicon nanowires on a Si substrate by a metal-catalyst-free process. Sci. Rep. 2016. Vol. 6. P. 30608.

32. Hannon J.B., Kodambaka S., Ross F.M., Tromp R.M. The influence of the surface migration of gold on the growth of silicon nanowires. Nature. 2006. Vol. 440. P. 69—71.

33. Hofmann S., Sharma R., Wirth C.T., Cervantes-Sodi F., Ducati C., Kasama T., Dunin-Borkowski R.E., Drucker J., Bennett P., Robertson J. Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth. Nature. 2008. Vol. 7. P. 372—375.

34. Zhang Y., Wang N., Gao S., He R., Miao S., Liu J., Zhu J., Zhang X. A simple method to synthesize nanowires. Chem. Mater. 2002. Vol. 14. Iss. 8. P. 3564—3568.

35. Hu P., Dong S., Zhang X., Gui K., Chen G., Hu Z. Synthesis and characterization of ultralong SiC nanowires with unique optical properties, excellent thermal stability and flexible nanomechanical properties. Sci. Rep. 2017. Vol. 7. Iss. 1. P. 3011.

36. Pujar V.V., Cawley J.D. Effect of stacking faults on the X-ray diffraction profiles of β-SiC powders. J. Am. Ceram. Soc. 1995. Vol. 78. Iss. 3. P. 774—782.

37. Liu Z., Kong Q.-Q., Chen C.-M., Zhang Q., Hu L., Li X.-M., Han P.-D., Cai R. From two-dimensional to one-dimensional structures: SiC nano-whiskers derived from graphene via a catalyst-free carbothermal reaction. RSC Adv. 2015. Vol. 5. Iss. 8. P. 5946—5950.

38. Dai J., Sha J., Shao J., Zu Y., Lei M., Flauder S., Langhof N., Krenkel W. In-situ growth of SiC nanostructures and their influence on anti-oxidation capability of C/SiC composites. Corros. Sci. 2017. Vol. 124. P. 71—79.

39. Wu R., Yang Z., Fu M., Zhou K. In-situ growth of SiC nanowire arrays on carbon fibers and their microwave absorption properties. J. Alloys Compd. 2016. Vol. 687. P. 833—838.

40. Vorotilo S., Levashov E.A., Kurbatkina V.V., Kovalev D.Yu., Kochetov N.A. Self-propagating high-temperature synthesis of nanocomposite ceramics TaSi 2 —SiC with hierarchical structure and superior properties. J. Eur. Ceram. Soc. 2018. Vol. 38. Iss. 2. P. 433—443.

41. Bondarev A.V., Vorotilo S., Shchetinin I.V., Levashov E.A., Shtansky D.V. Fabrication of Ta—Si—C targets and their utilization for deposition of low friction wear resistant nanocomposite Si—Ta—C—(N) coatings intended for wide temperature range tribological applications. Surf. Coat. Technol. 2019. Vol. 359. P. 342—353.

42. Laurila T., Zeng K., Kivilahti J.K., Molarius J., Suni I. TaC as a diffusion barrier between Si and Cu. J. Appl. Phys. 2002. Vol. 91. Iss. 8. P. 5391—5399.

43. Zhu Y., Xu F., Qin Q.Q., Fung W.Y., Lu W. Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. Nano Lett. 2009. Vol. 9. Iss. 11. P. 3934—3939.

44. Zhu Y., Qin Q.Q., Xu F., Fan F.R., Ding Y., Zhang T., Wiley B.J., Wang Z.L. Size effects on elasticity, yielding, and fracture of silver nanowires: In situ experiments. Phys. Rev. B. 2012. Vol. 85. Iss. 4. P. 045443.

45. Richter G., Hillerich K., Gianola D.S., Mönig R., Kraft O., Volkert C.A. Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. Nano Lett. 2009. Vol. 9. Iss. 8. P. 3048—3052.

46. Agrawal R., Peng B., Espinosa H.D. Experimental-computational investigation of ZnO nanowires strength and fracture. Nano Lett. 2009. Vol. 9. Iss. 12. P. 4177—4183.

47. He M.-R., Zhu J. Defect-dominated diameter dependence of fracture strength in single-crystalline ZnO nanowires: In situ experiments. Phys. Rev. B: Condens. Matter Mater. Phys. 2011. Vol. 83. Iss.16. P. 161302.

48. Mehan R.L., Herzog J.A. In whisker technology. Ed. A.P. Levitt. Wiley: New York, 1970.

49. Cheng G., Chang T.-H., Qin Q., Huang H., Zhu Y. Mechanical properties of silicon carbide nanowires: effect of size-dependent defect density. Nano Lett. 2014. Vol. 14. Iss. 2. P. 754—758.

50. Gusev A.I. Phase equilibria in M—X—X′ and M—Al—X ternary systems (M = transition metal; X, X′ = B, C, N, Si) and the crystal chemistry of ternary compounds. Russ. Chem. Rev. 1996. Vol. 65. Iss. 5. P. 407—451.

51. Gudiksen M.S., Lieber C.M. Diameter-selective synthesis of semiconductor nanowires. J. Am. Chem. Soc. 2000. Vol. 122. Iss. 36. P. 8801—8802.

52. Grosse Y., Loomis D., Guyton K.Z., Lauby-Secretan B., El Ghissassi F., Bouvard V., Benbrahim-Tallaa L., Guha N., Scoccianti C., Mattock H., Straif K. Carcinogenicity of fluoroedenite, silicon carbide fibres and whiskers, and carbon nanotubes. Lancet Oncol. 2014. Vol. 15. Iss. 13. P. 1427—1428.

53. Rodil S.E., Olivares R., Arzate H., Muhl S. Biocompatibility, cytotoxicity and bioactivity of amorphous carbon films. Top. Appl. Phys. 2006. Vol. 100. P. 55—75.

54. Huang Y., Duan X., Wei Q., Lieber C.M. Directed assembly of one-dimensional nanostructures into functional networks. Science. 2001. Vol. 291. Iss. 5504. P. 630—633.

55. Whang D., Jin S., Wu Y., Lieber C.M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 2003. Vol. 3. Iss. 9. P. 1255—1259.

56. Javey A., Nam S., Friedman R.S., Yan H., Lieber C.M. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 2007. Vol. 7. Iss. 3. P. 773—777.

57. Coltrin M.E., Kee R.J., Evans G.H. A mathematical model of the fluid mechanics and gas-phase chemistry in a rotating disk chemical vapor deposition reactor. J. Electrochem. Soc. 1989. Vol. 136. Iss. 3. P. 819—829.

58. Givargizov E.I. Fundamental aspects of VLS growth. J. Cryst. Growth. 1975. Vol. 31. P. 20—30.

59. Kim B.J., Tersoff J., Kodambaka S., Reuter M.C., Stach E.A., Ross F.M. Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth. Science. 2008. Vol. 322. Iss. 5904. P. 1070—1073.

60. Kodambaka S., Tersoff J., Reuter M.C., Ross F.M. Diameterindependent kinetics in the vapor-liquid-solid growth of Si nanowires. Phys. Rev. Lett. 2006. Vol. 96. Iss. 9. P. 096105.

61. Kempers L.J.T.M. A comprehensive thermodynamic theory of the soret effect in a multicomponent gas, liquid, or solid. J. Chem. Phys. 2001. Vol. 115. Iss. 14. P. 6330—6341.

62. Ross F.M., Tersoff J., Reuter M.C. Sawtooth faceting in silicon nanowires. Phys. Rev. Lett. 2005. Vol. 95. Iss. 14. P. 146104.

63. Wu Y., Cui Y., Huynh L., Barrelet C.J., Bell D.C., Lieber C.M. Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 2004. Vol. 4. Iss. 3. P. 433—436.

64. Schmidt V., Senz S., Gösele U. Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett. 2005. Vol. 5. Iss. 5. P. 931—935.

65. Lee G., Woo Y.S., Yang J.-E., Lee D., Kim C.-J., Jo M.-H. Directionally integrated VLS nanowire growth in a local temperature gradient. Angew. Chem. 2009. Vol. 48. Iss. 40. P. 7366—7370.

66. Johansson J., Dick K.A. Recent advances in semiconductor nanowire heterostructures. Cryst. Eng. Comm. 2011. Vol. 13. Iss. 24. P. 7175—7184.

67. Chuang L.C., Moewe M., Chase C., Kobayashi N.P., ChangHasnain C., Crankshaw S. Critical diameter for III—V nanowires grown on lattice-mismatched substrates. Appl. Phys. Lett. 2007. Vol. 90. Iss. 4. P. 043115.

68. Cirlin G.E., Dubrovskii V.G., Soshnikov I.P., Sibirev N.V., Samsonenko Y.B., Bouravleuv A.D., Harmand J.C., Glas F. Critical diameters и temperature domains for MBE growth of III—V nanowires on lattice mismatched substrates. Phys. Status Solidi (RRL). 2009. Vol. 3. Iss. 4. P. 112—114.

69. Yunlong Z., Ming H., Xiangge Q., Xiaogang S. The influence of additive content on microstructure и mechanical properties on the Cs f /SiC composites after annealed treatment. Appl. Surf. Sci. 2013. Vol. 279. P. 71—75.


Review

For citations:


Vorotilo S., Levashov E.A., Potanin A.Yu., Loginov P.A., Shvyndina N.V. Features of synthesizing ceramic composites discretely reinforced by carbon fibers and SiC nanowires formed in situ in the combustion wave. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2020;(1):41-54. (In Russ.) https://doi.org/10.17073/1997-308X-2020-41-54

Views: 830


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)