Phase-structure formation and features of the behavior of iron–high-carbon ferrochrome–nickel boride powder materials under abrasive wear conditions
https://doi.org/10.17073/1997-308X-2020-55-64
Abstract
About the Authors
E. S. KaraimchukUkraine
junior researcher of Department № 36
03680, Kyiv, Krzhizhanovsky str., 3
V. A. Maslyuk
Ukraine
Dr. Sci. (Tech.), prof., leading officer of Department № 36
03680, Kyiv, Krzhizhanovsky str., 3
A. A. Mamonova
Ukraine
Cand. Sci. (Tech.), senior researcher of Department № 36
03680, Kyiv, Krzhizhanovsky str., 3
S. A. Umerova
Ukraine
Cand. Sci. (Tech.), researcher of Department № 48
03680, Kyiv, Krzhizhanovsky str., 3
References
1. Garber M.E. Wear-resistant white cast irons: properties, structure, technology, operation. Moscow: Mashinostroenie, 2010 (In Russ.).
2. Maslyuk V.A., Napara-Volgina S.G. Wear and corrosion resistant materials such as carbide steels with various dies. Poroshkovaya metallurgiya. 1999. No. 9/10. P. 108—114 (In Russ.).
3. Maslyuk V.A., Yakovenko R.V., Potazhevskaya O.A., Bondar A.A. Powder solid alloys and chromium carbide steels based on the Fe—Cr—C system. Poroshkovaya metallurgiya. 2013. No. 1/2. P. 61—74 (In Russ.).
4. Maslyuk V.A. Tungsten-free carbides and carbide-containing chromium carbides. Poroshkovaya metallurgiya. 2014. No. 3/4. P. 47—57 (In Russ.).
5. Bondar A., Ivanchenko V., Kozlov A., Tedenac J.-C. Carbon-chromium-iron. In: Landolt-Börnstein, Numerical data and functional relationships in science and technology. Ed. W. Martinsen. New Series. Group IV: Physical Chemistry. Ternary Alloy Systems. Phase Diagrams, Crystallographic and Thermodynamic Data Critically Evaluated by MSIT. Eds. G. Effenberg, S. Ilyenko. Berlin, Heidelberg: Springer-Verlag, 2007. Vol. 11D2. P. 1—55.
6. Khvan A.V., Hallstedt B., Broeckmann C. A thermodynamic evaluation of the Fe—Cr—C system. Calphad. 2014. Vol. 46. P. 24—33.
7. Jackson R.S. The austenite liquidus surface and constitutional diagram for the Fe—Cr—C metastable system. J. Iron Steel Inst. 1970. Vol. 208. P. 63—67.
8. Yilmaz S.O. Wear behavior of gas tungsten arc deposited FeCrC, FeCrSi, and WCo coatings on AISI 1018 steel. Surf. Coat. Technol. 2005. Vol. 194. P. 175—183.
9. Lu B., Luo J., Chiovelli S. Corrosion and wear resistance of chrome white irons — A correlation to their composition and microstructure. Metall. Mater. Trans. A. 2006. Vol. 37. P. 3029—3038.
10. Lin C.M., Chang C.M., Chen J.H., Wu W. The effects of additive elements on the microstructure characteristics and mechanical properties of Cr—Fe—C hard-facing alloys. J. Alloys Compd. 2010. Vol. 498. P. 30—36.
11. Liu H.N., Sakamoto M., Nomura M., Ogi K. Abrasion resistance of high Cr cast irons at an elevated temperature. Wear. 2001. Vol. 250. P. 71—75.
12. Llewellyn R.J., Yick S.K., Dolmanb K.F. Scouring erosion resistance of metallic materials used in slurry pump service. Wear. 2004. Vol. 256. P. 592—599.
13. Wu X.J., Xing J.D., Fu H.G., Zhi X.H. Effect of titanium on the morphology of primary M7 C 3 carbides in hypereutectic high chromium white iron. Mater. Sci. Eng. A. 2007. Vol. 457. P. 180—185.
14. Hanlon D.N., Rainforth W.M., Sellars C.M. The rolling/ sliding wear response of conventionally processed and spray formed high chromium content cast iron at ambient and elevated temperature. Wear. 1999. Vol. 225—229. P. 587—599.
15. Tang X.H. Microstructure of high (45 wt.%) chromium cast irons and their resistances to wear and corrosion. Wear. 2011. Vol. 271. P. 1426—1431.
16. Lin C.M., Lai H.H., Kuo J.C., Wu W. Effect of carbon content on solidification behaviors and morphologicalcharacteristics of the constituent phases in Cr—Fe—C alloys. Mater. Charact. 2011. Vol. 62. P. 1124—1133.
17. Mridha S., Ong H.S., Poh L.S., Cheang P. Intermetallic coating produced by TIG surface melting. J. Mater. Process. Technol. 2001. Vol. 113. P. 516—520.
18. Buytoz S., Yildirim M.M., Eren H. Microstructural and microhardness characteristics of gas tungsten are synthesized Fe—Cr—C coating on AISI 4340. Mater. Lett. 2005. Vol. 59. P. 607—614.
19. Zeng C.L., Wu W.T. Corrosion of Ni—Ti alloys in the molten (Li,K)2 CO 3 eutectic mixture. Corros. Sci. 2002. Vol. 44. P. 1—12.
20. Maslyuk V.A. Bondar A.A., Kuras V.V. Structure and properties of powder materials of composition of ironhigh-carbon ferrochrome. Poroshkovaya metallurgiya. 2013. No. 5/6. P. 66—74 (In Ukr.).
21. Maslyuk V.A., Karaimchuk E.S., Kurochkin V.D. Structure, physicomechanical and tribotechnical properties of ironhigh-carbon ferrochrome powder materials alloyed with Ni3 B additives. Poroshkovaya metalurgíya. 2018. No. 3/4. P. 62—70 (In Ukr.).
22. Maslyuk V.A., Sitnik Ya.A., Pidoprigora M.I., Yakovenko R.V. Influence of additives of chromium steels and nickel boride on the structure and properties of powder composite materials iron — high carbon ferrochrome FH 800. Poroshkovaya metallurgiya. 2015. No. 5/6. P. 5259 (In Ukr.).
23. ISO 4498-1-90. Metal sintered materials, excluding hard alloys. Determination of apparent hardness. Materials mainly with uniform hardness over the cross-section (In Ukr.).
24. DSTU ISO 3327. Alloys are solid. Determination of ultimate strength in transverse bending (In Ukr.).
Review
For citations:
Karaimchuk E.S., Maslyuk V.A., Mamonova A.A., Umerova S.A. Phase-structure formation and features of the behavior of iron–high-carbon ferrochrome–nickel boride powder materials under abrasive wear conditions. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2020;(1):55-64. (In Russ.) https://doi.org/10.17073/1997-308X-2020-55-64