Numerical analysis of porous blank die forging in the die with the implementation of active friction forces
https://doi.org/10.17073/1997-308X-2020-3-17-24
Abstract
The paper provides the results of simulating the hot die forging of porous powder preforms with active friction forces applied along the lateral surface of the deformable blank by means of internal cohesion in the die-material system. The study covers the evolution of relative density distribution over the blank cross section at different stages of deformation, stress-strain state and total strain force while varying the loading boundary conditions by changing the initial compression force applied to elastic elements that prevent the die from displacement. It is shown that active friction forces acting on the periphery of the forging adjacent to the die inner side result in areas with a significantly higher deformation intensity compared to deformations in the center of the blank volume. At the same time, the volume of the high deformation intensity area and maximum values of deformation increase with a decrease in the spring initial compression force and, accordingly, with an increase in the die displacement value during deformation. Automatic die displacement due to internal cohesion in the die-deformable material system leads to a decrease in the total deformation force, and with a decrease in the die displacement value during deformation, the deformation force increases.
About the Authors
G. A. BagliukUkraine
Bagliuk G.A. - Dr. Sci. (Eng.), Acad. of NASU, Prof., Deputy director
02180, Ukraine, Kyiv, Krzhizhanovsky str., 3
S. F. Kyryliuk
Ukraine
Kyryliuk S.F. - Postgraduate student
02180, Ukraine, Kyiv, Krzhizhanovsky str., 3
References
1. Dixit U.S., Joshi S.N., Davim J.P. Incorporation of material behavior in modeling of metal forming and machining processes: A review. Mater. Design. 2011. Vol. 32. P. 3655—3670.
2. Narayanasamy R., Ramesh T., Pandey K.S. Some aspects on cold forging of aluminium—iron powder metallurgy composite under triaxial stress state condition. Mater. Design. 2008. Vol. 29. P. 891—903.
3. Baglyuk G. Densification and shape change of porous billets in closed and open dies. In: Recent Developments in Computer Modeling of Powder Metallurgy Processes. IOS Press. NATO Sci. Ser. 2001. P.163—168.
4. Gorokhov V.M., Doroshkevich E.A., Zvonarev E.V. Compaction and shaping of powder materials during hot pressing in conditions of non-uniform stress-strain state. Poroshkovaya metallurgiya. 1984. No. 5. P. 100—105 (In Russ.).
5. Bagliuk G.A., Khomenko A.I. Features of the deformed state of porous blanks with their closed and open hot forging. Izvestiya vuzov. Tsvetnaya metallurgiya. 2015. No. 1. P. 57—62 (In Russ.).
6. Qiu J.W., Liu Y., Liu B., Liu Y.B. Optimizing the hotforging process parameters for connecting rods made of PM titanium alloy. J. Mater. Sci. 2012. Vol. 47. P. 3837—3848. DOI: 10.1007/s10853-011-6239-4.
7. Narayanasamy R., Senthilkumar V., Pandey K.S. Some aspects on hot forging features of P/M sintered iron preforms under various stress state conditions. Mech. Mater. 2006. Vol. 38. P. 367—386.
8. Bagliuk G.A. Influence of deformation parameters on the structure and properties of hot-forged powder materials. Obrabotka materialov davleniem. 2011. No. 1 (26). P. 139— 145 (In Russ.).
9. Tsirkin A.T., Riabicheva L.A., Liubchich K.V., Riabovol T.A. The influence of back pressure on the quality of products in the direct extrusion of powder porous blanks. In: Resursozberіgayuchі tekhnologії virobnitstva ta obrobki tiskommaterіalіv u mashinobuduvannі. Lugansk: SNU, 2009. P. 20—26 (In Russ.).
10. Buckingham R. C., Argyrakis C., Hardy M. C., Birosca S. The effect of strain distribution on microstructural developments during forging in a newly developed nickel base superalloy. Mater. Sci. Eng. A. 2016. Vol. 654. P. 317—328.
11. Ma Q, Lin Z-Q, Yu Z-Q. Prediction of deformation behavior and microstructure evolution in heavy forging by FEM. Int. J. Adv. Manufact. Technol. 2009. Vol. 40. P. 253—260.
12. Bontcheva N. Microstructure evolution during metal forming processes. Comput. Mater. Sci. 2003. Vol. 28. P. 563—573.
13. Das S., Klotz M., Klocke F. EDM simulation: finite element-based calculation of deformation, microstructure and residual stresses. J. Mater. Process. Technol. 2003. Vol. 142. P.434—451.
14. Jeong H.S., Cho J.R. Microstructure prediction of Nimonic 80A for large exhaust valve during hot closed die forging. J. Mater. Process. Technol. 2005. Vol. 162. P. 504—511.
15. Okhrimenko Ya.M. The beneficial effect of friction in the processes of forging, pressing and extrusion. Kuznechnoshtampovochnoe proizvodstvo. 1981. No. 6. P. 17—20 (In Russ.).
16. Bagliuk G.A. Improving the processes of powder materials deformation based on the control of contact friction forces. Poroshkovaya metallurgiya. 2002. No. 1-2. P. 19— 25 (In Russ.).
17. Manisekar K., Narayanasamy R., Malayappan S. Effect of friction on barreling in square billets of aluminium during cold upset forging. Mater. Design. 2006. Vol. 27. No. 2. P. 147—155.
18. Bagliuk G.A., Mazharova G.E. The die for forging of powder preforms with active friction forces. Poroshkovaya metallurgiya.1989. No. 4. P. 92—94 (In Russ.).
19. Shima S., Oyane M. Plasticity theory for porous metals. Int. J. Mech. Sci. 1976. Vol. 18. P. 285—291.
20. Khoei A.R. Computational plasticity in powder forming processes. Elsevier Sci., 2005.
21. Dorofeev V.Yu., Egorov S.N. Interparticle concretion during the formation of powder hot-deformed materials. Moscow: Metallurgizdat, 2003 (In Russ.).
Review
For citations:
Bagliuk G.A., Kyryliuk S.F. Numerical analysis of porous blank die forging in the die with the implementation of active friction forces. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2020;(3):17-24. (In Russ.) https://doi.org/10.17073/1997-308X-2020-3-17-24