Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Research of reinforcement phase formation on the borders of sintered berillium grains

https://doi.org/10.17073/1997-308X-2020-3-25-33

Abstract

The paper presents the results of studying the effect of the state of grain boundaries (formed in the consolidation of beryllium powders by vacuum hot pressing on the strength properties of sintered beryllium. Scanning electron microscopy and X-ray spectral microanalysis were used to study the dependences of the morphology, elemental composition and structure of a dispersion hardening phase - beryllium oxide – on the content of low-melting impurities at the grain boundaries of sintered beryllium. A new hypothesis is proposed to explain the difference in the morphology and structure of reinforcing particles based on the transition features of amorphous beryllium oxide to a crystalline state (devitrification) at the grain boundaries of metallic beryllium. It is theoretically substantiated and experimentally confirmed that the devitrification mechanism can be homogeneous or heterogeneous depending on the content and ratio of silicon and aluminum impurities. This difference leads to the formation of either finely dispersed high-strength reinforcing particles of beryllium oxide or large, lower-strength oxide clusters. Changes in the morphology and structure of reinforcing oxide particles at the metallic beryllium grain boundaries, in its turn, influence the dynamics of beryllium microstructure grain growth during vacuum hot forming and, ultimately, the effect of dispersed grain-boundary hardening of sintered n beryllium. The paper provides the statistically processed results of testing the mechanical properties of industrial hot-pressed blanks produced of less than 56 μm powders to determine the effect of various factors (the content of impurities, their ratio and particle size of the initial powders) on the strength properties of hot-pressed beryllium. The adequacy of the obtained regularities was evaluated using the approximation confidence coefficients and confirmed the conclusions made in the theoretical and experimental analysis of the research problem. The statistical studies substantiated a comprehensive quality indicator of initial powders in order to predict the strength properties of hot-pressed beryllium. The results obtained substantiate new possibilities for controlling the mechanical properties of sintered beryllium for various purposes.

About the Authors

A. V. Revutsky
D. Serikbayev East Kazakhstan state technical university (EKSTU), Ust-Kamenogorsk
Kazakhstan

Revutsky A.V. - PhD student of the International higher technical school «Oskemen»

070000, Kazakhstan, Ust-Kamenogorsk, Serikbayev str. 19



V. Yu. Syrnev
D. Serikbayev East Kazakhstan state technical university (EKSTU)
Kazakhstan

Syrnev B.V. – Dr. Sci. (Eng.), Professor of ITPS OK

070000, Kazakhstan, Ust-Kamenogorsk, Serikbayev str. 19



V. Yu. Lopatin
National University of Science and Technology «MISIS»
Russian Federation

Lopatin V.Yu. - Cand. Sci. (Eng.), Associate prof. of the Department of powder metallurgy and functional coatings

119049, Russia, Moscow, Leninskii pr., 4



O. V. Semilutskaya
D. Serikbayev East Kazakhstan state technical university (EKSTU), Ust-Kamenogorsk
Kazakhstan

Semilutskaya O.V. – Senior lecturer of ITPS

070000, Kazakhstan, Ust-Kamenogorsk, Serikbayev str. 19



T. A. Segeda
D. Serikbayev East Kazakhstan state technical university (EKSTU)
Kazakhstan

Segeda T.A. - Cand. Sci. (Phys.-Math.), Dean of ITPS OK

070000, Kazakhstan, Ust-Kamenogorsk, Serikbayev str. 19



References

1. Belyaev R.A. Beryllium oxide. Mosсow: Atomizdat, 1980 (In Russ.).

2. Webster D. The effect of low melting phases on the elevated temperature microstructural stability of hot pressed beryllium. Met. Trans. A. 1975. Vol. 6. No. 4. Р. 803—808.

3. Davyd ov D.A., Kholopova O.V., Kolbasov B.N. Formation and degradation of oxide films on beryllium. Voprosy atomnoi nauki i tekhniki. Ser.: Termoyadernyi sintez. 2010. No. 2. P. 39—49 (In Russ.).

4. Taylor N., Baker D., Cattaglia S. Key issues in the safety and licensing of ITER. In: IAEA, 3-rd TM «First generation of fusion power plants: Design and technology» (Vienna, Austria, 13—15 July 2009); 9-th TM «Fusion power plant safety» (Vienna, Austria, 15—17 July 2009). CD-ROM proc., Thursday-2009-07-16.

5. Davydov D.A., Kholopova O.V., Kolbasov B.N. Inflammation and oxidation characteristics of beryllium: ITER Final Report, TA. No. ITA-81-06 Be Dust Explosion, July 2005.

6. Nikolaenko A.A., Tuzov Yu.V. The effect of grain boundary oxide inclusions on the mechanical properties of hotpressed beryllium. Voprosy atomnoi nauki i tekhniki. Ser.: Termoyadernyi sintez. 2012. No. 2. P. 52—59 (In Russ.).

7. Mori Y., Niiya N., Ukegawa K., Mizuno T., Takarabe K., Ruoff A.L. High-pressure X-ray structural study of BeO and ZnO to 200 GPa. Physica Stat. Sol. B. 2004. Vol. 241. No. 14. P. 3198.

8. Cai Y., Wu S., Xu R., Yu J. Pressure-induced phase transition and its atomistic mechanism in BeO: A theoretical calculation. Phys. Rev. B. 2006. Vol. 73. Iss. 18. No. 184104.

9. Sebahaddin A., Murat D. Pressure-induced phase transition of BeO. Solid State Commun. 2009. Vol. 149. No. 9-10. Р. 345—348.

10. Shablovskii Ya.O. Thermodynamic laws of beryllium oxide polymorphism. Zhurnal fizicheskoi khimii. 2010. Vol. 8. No. 12. P. 2211—2216 (In Russ.).

11. Weisz M., Mollen J., Voron J. Possibility of the appearance of a liquid phase at 430 °C in commercial beryllium. J. Nucl. Mater. 1963. Vol. 10. Р. 56—59.

12. Tuzov Yu.V., Khomutov A.M. Development of a general criterion for the performance of products from beryllium. Tsvetnye metally. 2010. No. 2. P. 76—78 (In Russ.).

13. Kan R. Physical metal science. Moscow: Mir. 1968. Vol. 2 (In Russ.).

14. Dokhov M.P. Interfacial energy at the boundaries of the solid phase — melt and solid phase-pairs of some metalceramic systems. Fundamental’nye issledovaniya. 2008. No. 8. P. 50—51 (In Russ.).

15. Humenik M., Kingerу W.D. Metal-ceramic interactions: III. Surface tension and wettability of metal-ceramics systems. J. Amer. Cerаm. Soc. 1954. Vol. 37. No. 1. Р. 18—23.

16. Rhee S.K. A method for determining surface energies of solids: Temperature-variant contact angle method. Mater. Sci. Eng. 1977. Vol. 16. No. 1. P. 45—51.

17. Dokhov M.P. New version of the thermodynamic assessment of interfacial energy at the solid-melt interface. Izvestiya vuzov. Fizika. Tomsk: VINITI, 1987 (In Russ.).

18. Geguzin Ya.E. Sintering physics. Moscow: Nauka, 1984 (In Russ.).

19. Turner G.I., Lane R.A. The effect of powder particle size on the mechanical properties of hot pressed P1 beryllium. In: Proc. Conf. «Beryllium» (London, October, 1977). P. 1—15.

20. Webster D., Crooks D.D., Vidoz A.E. The effect of oxide dispersion on the recrystallization of beryllium. Met. Trans. 1974. Vol. 4. No. 12. P. 2841—2847.

21. Papirov I.I., Tikhinskii G.F. Plastic deformation of beryllium. Moscow: Atomizdat, 1973 (In Russ.).

22. Khonikomb R. Plastic deformation of metals. Moscow: Mir, 1972 (In Russ.).


Review

For citations:


Revutsky A.V., Syrnev V.Yu., Lopatin V.Yu., Semilutskaya O.V., Segeda T.A. Research of reinforcement phase formation on the borders of sintered berillium grains. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2020;(3):25-33. (In Russ.) https://doi.org/10.17073/1997-308X-2020-3-25-33

Views: 591


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)