Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Study into the feasibility of obtaining dense materials based on AlN-SiC solid solution in one stage by SHS gasostatiс processing

https://doi.org/10.17073/1997-308X-2020-3-34-40

Abstract

The synthesis and sintering of the (AlN)x(SiC)1–x solid solution were studied under the conditions of SHS gasostatiс processing at high nitrogen gas pressures (up to 110 MPa). Phase formation during the combustion of aluminum and silicon carbide mixtures with the different amount of a combustible component (aluminum content is 35 to 60 wt.%) was studied. It was shown that the optimal amount of aluminum mixed with silicon carbide to obtain a single-phase solid solution (with the complete Al conversion to AlN and without SiC dissociation) is 45–50 wt.%. A mixture with 55–60 wt.% Al leads to excessively high temperatures, which in turn leads to the silicon carbide decomposition to Si + C elements. The optimal parameters for obtaining a dense material in one stage were determined. The measured porosity and density of materials obtained demonstrated that preforming is essential for the final density of samples containing 50 wt.% Al: maximum density was achieved at a preforming pressure of 10 MPa. It was found that the 5 wt.% yttrium oxide additive increases the material density by almost 10 %. A similar effect is also obtained by increasing the initial gas pressure from 80 to 110 MPa. The maximum density in this case reached 2.7 g/cm3, i.e. 83 % of the theoretical density. The total volumetric shrinkage of the material was 10 ± 0.5 %, and this indicator can be almost completely smoothed over by the 3 wt.% boron additive. The microhardness of samples was 2000 kg/mm2.

About the Authors

T. G. Akopdzhanyan
Merzhanov Institute of Structural Macrokinetics and Materials Science of Russian Academy of Sciences (ISMAN)
Russian Federation

Akopdzhanyan T.G. – Cand. Sci. (Eng.), Research scientist, Laboratory of self-propagating high-temperature synthesis (SHS)

142432, Russia, Moscow reg., Chernogolovka, Acad. Osipyan str., 8



E. A. Chemagina
Merzhanov Institute of Structural Macrokinetics and Materials Science of Russian Academy of Sciences (ISMAN)
Russian Federation

Chemagina E.A. – Research еngineer, Laboratory of SHS

142432, Russia, Moscow reg., Chernogolovka, Acad. Osipyan str., 8



I. P. Borovinskaya
Merzhanov Institute of Structural Macrokinetics and Materials Science of Russian Academy of Sciences (ISMAN)
Russian Federation

Borovinskaya I.P. – Dr. Sci. (Chem.)

142432, Russia, Moscow reg., Chernogolovka, Acad. Osipyan str., 8



References

1. Kobayashi R., Tatami J., Wakihara T., Meguro T., Komeya K. Electrical properties of AlN—SiC ceramics. Key Eng. Mater. 2006. No. 317-318. P. 641—644. DOI: 10.4028/www.scientific.net/KEM.317-318.641.

2. Kobayashi R., Tatami J., Chen I., Wakihara T., Komeya K Meguro T., Goto T., Tu R., Zangvil A. High temperature mechanical properties of dense AlN—SiC ceramics fabricated by spark plasma sintering without sintering additives. J. Amer. Ceram. Soc. 2011. Vol. 94. No. 12. P. 4150–4153. DOI: 10.1111/j.1551-2916.2011.04901.x.

3. Kobayashi R., Tatami J., Wakihara T., Komeya K., Meguro T., Tu R., Goto T. Evaluation of grain-boundary conduction of dense AlN—SiC solid solution by scanning nonlinear dielectric microscopy. J. Amer. Ceram. Soc. 2010. Vol. 93. Iss. 12. P. 4026—4029. DOI: 10.1111/j.1551-2916.2010.04230.x.

4. Cutler I.B., Miller P.D., Rafaniello W., Park H.K., Thompson D.P., Jack K.H. New materials in the Si—C—Al—O—N and related systems. Nature. 1978. Vol. 275. No. 5679. P. 434—435. DOI: 10.1038/275434a0.

5. Kurbanov M.K., Bilalov B.A., Safaraliev G.K., Ramazanov Sh. Effect of sublimation epitaxy conditions on the properties of (SiC)1–x(AlN)x solid solutions. Inorg. Mater. 2007. Vol. 43. No. 12. P. 1301. DOI: 10.1134/S0020168507120084.

6. Ruh R., Zangvil A., Barlowe J. Elastic properties of SiC—AlN and their solid solutions and practiculate composites. Amer. Ceram. Soc. Bull. 1985. Vol. 64. No. 10. P. 1368—1373.

7. Kurbanov M.K., Safaraliev G.K., Bilalov B.A., Guseinov M.K. Obtaining of (SiC)1–x(AlN)x solid solution. Pis’ma v ZhTF. 2005. Vol. 31. No. 4. P. 13—16 (In Russ.).

8. Rafaniello W., Cho К., Virkar A.V. Fabrication and characterization of SiC—A1N alloys. J. Mater. Sci. 1981. Vol. 16. No. 12. P. 3478–3479.

9. Lee R.R., Wei W.C. Fabrication, microstructure, and properties of SiC—AIN ceramic alloys. Ceram. Eng. Sci. Proc. 1990. Vol. 11. No. 7-8. P. 1094—1121.

10. Xu Y., Zangvil A., Landon M., Thevenot F. Microstructure and mechanical properties of hotpressed silicon carbide—aluminum nitride compositions. J. Amer. Ceram. Soc. 1992. Vol. 75. No. 2. P. 325—333. DOI: 10.1111/j.1151-2916.1992.tb08182.x.

11. Safaraliev G.K., Tairov Yu.M., Tsvetkov V.F., Shabanov Sh.Sh., Pashchuk V.G., Ofitserova N.V., Avrov D.D., Sadykov C.A. Production and properties of SiC—AlN polycrystalline solid solutions. Fizika i tekhnika poluprovodnikov. 1993. Vol. 27. No. 3. P. 402—408 (In Russ.).

12. Juang R.C., Chen C.C., Kuo J.C., Huang T.Y., Li Y.Y. Combustion synthesis of hexagonal AlN—SiC solid solution under low nitrogen pressure. J. Alloys Compd. 2009. Vol. 480. Iss. 2. P. 928—933. DOI: 10.1016/j.jallcom.2009.02.102.

13. Kexin Ch., Haibo J., Zhou H., Ferreira J. Combustion synthesis of AlN—SiC solid solution particles. J. Eur. Ceram. Soc. 2000. No. 20. P. 2601—2606. DOI: 10.1016/S0955-2219(00)00119-9.

14. Xue H., Munir Z.A. Synthesis of AlN—SiC composites and solid solutions by field-activated self-propagating combustion. J. Eur. Ceram. Soc. 1997. Vol. 17. No. 15-16. P. 1787—1792. DOI: 10.1016/S0955-2219(97)00075-7.

15. Kexin C., Haibo J., Heping Z., Ferreira J. Combustion synthesis of AlN—SiC solid solution particles. J. Eur. Ceram. Soc. 2000. Vol. 20. No. 26. P. 1—6. DOI: 10.1016/S0955-2219(00)00119-9.

16. Li Zh., Jiang J.X., Wei Y.P., Yan M., Chen Y.L., Chang Y.Self-combustion synthesis of AlN—SiC solid solution powder in air with assistance of highenergy mechanical milling. Adv. Mater. Res. 2013. No. 629. P. 39—43. DOI: 10.4028/www.scientific.net/AMR.629.39.

17. Ruh R., Zangvil A. Composition and properties of hotpressed SiC—AIN solid solutions. J. Amer. Ceram. Soc. 1982. Vol. 65. No. 5. P. 260—265. DOI: 10.1111/j.1151-2916.1982.tb10429.x.

18. Li J.-F., Watanabe R. Preparation and mechanical properties of SiC—AlN ceramic alloy. J. Mater. Sci. 1991. Vol. 26. No. 17. P. 4813—4817. DOI: 10.1007/BF00612422.

19. Bu W., Xu J., Qiu T. Investigation of reaction synthesis of AlN—SiC solid solution. J. Mater. Sci. Let. 2002. No. 21. P. 731–732. DOI: 10.1023/A:1015745307820.

20. Merzhanov A.G., Borovinskaya I.P. A new class of combustion processes. Combust. Sci. Technol. 1975. Vol. 10. No. 5-6. P. 195—201.

21. Mukasyan A.S., Stepanov B.V., Galchenko Yu.A., Borovinskaya I.P. Mechanism of silicon nitride structure formation at silicon combustion in nitrogen. Combust., Explos. Shock Waves. 1990. Vol. 26. No. 1. P. 39—45.

22. Zakorzhevskii V.V., Borovinskaya I.P. Combustion synthesis of submicron AlN particles. Inorg. Mater. 2015. Vol. 51. No. 6. P. 566—571. DOI: 10.1134/S0020168515060187.


Review

For citations:


Akopdzhanyan T.G., Chemagina E.A., Borovinskaya I.P. Study into the feasibility of obtaining dense materials based on AlN-SiC solid solution in one stage by SHS gasostatiс processing. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2020;(3):34-40. (In Russ.) https://doi.org/10.17073/1997-308X-2020-3-34-40

Views: 525


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)