Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Investigation of the processes of the formation of a nonequilibrium phase-structural state in FeTiB films obtained by magnetron sputtering

https://doi.org/10.17073/1997-308X-2020-3-65-75

Abstract

The main trends of modern developing magnetic microelectronics are miniaturization and speed, while ensuring efficient operation in the MHz and GHz frequency ranges of magnetic fields. Developing new magnetic materials featured by properties that ensure the implementation of these trends is the key fundamental and applied problem of materials science. In this regard, Fe-Me-X nanocrystalline soft magnetic alloys (Me is one of the metals from Group IVb of the Periodic Table, X is one of the N, C, O, B light elements) obtained in the form of films are of interest. As shown earlier by the authors of this article on Fe-Zr-N films, such films featuring by the Fe/MeX two-phase structure can provide a combination of high saturation induction (Bs), low coercive force (Hc), high hardness, and thermal stability of the structure. The films were produced by magnetron sputtering. The data obtained and published by the authors on the Fe–Ti–B films earlier indicate great prospects for their application in modern microelectronics. There are no any other published results of FeTiB film studies in the context of microelectronics applications. In this paper, we continue the studies of FeTiB films started earlier to identify the chemical and phase composition providing the level of properties required for film application in microelectronics. Nanocrystalline films containing 0 to 14.3 at.% Ti and 0 to 28.9 at.% B were obtained by DC magnetron sputtering. The phase-structural state of the films was studied by X-ray diffraction and transmission electron microscopy. All films are divided into 3 groups according to phase composition: single-phase (supersaturated solid solution of Ti in α-Fe), two-phase (α-Fe(Ti)/α-Ti, α-Fe(Ti)/TiB2, α-Fe (Ti)/FeTi, α-Fe(Ti)/Fe2B) and XRD amorphous. It is shown that XRD amorphous films feature by a mixed structure represented by a solid solution of α-Fe(Ti) with a grain size between 0.7 and 2 nm and an amorphous phase. A reasonable assumption is made on the amorphous phase enrichment by boron. A quantitative assessment of the α-Fe(Ti) phase grain size and its dependence on the chemical and phase composition of the films is given. The mechanisms of solid solution and dispersion hardening determine the grain size of this phase.

About the Authors

E. N. Sheftel
Baikov Institute of Metallurgy and Materials Science (IMMS) of RAS
Russian Federation

Sheftel E.N. – Dr. Sci. (Eng.), Prof., Leading researcher of the Laboratory No. 7

119334, Russia, Moscow, Leninskii pr., 49

 



V. A. Tedzhetov
Baikov Institute of Metallurgy and Materials Science (IMMS) of RAS
Russian Federation

Tedzhetov V.A. – Junior researcher of the Laboratory No. 7

119334, Russia, Moscow, Leninskii pr., 49



Ph. V. Kiryukhantsev-Korneev
National University of Science and Technology «MISIS»
Russian Federation

Kiryukhantsev-Korneev Ph.V. – Cand. Sci. (Eng.), Leading research scientist of the Scientific-Educational Centre of SHS; Associate professor of the Department of powder metallurgy and functional coatings

119049, Russia, Moscow, Leninskii pr., 4



E. V. Harin
Baikov Institute of Metallurgy and Materials Science (IMMS) of RAS
Russian Federation

Harin E.V. – Cand. Sci. (Eng.), Researcher of the Laboratory No. 7

119334, Russia, Moscow, Leninskii pr., 49



G. Sh. Usmanova
Baikov Institute of Metallurgy and Materials Science (IMMS) of RAS
Russian Federation

Usmanova G.Sh. – Cand. Sci. (Eng.), Senior researcher of the Laboratory No. 7

119334, Russia, Moscow, Leninskii pr., 49



O. M. Zhigalina
Federal Research Center Crystallography and Photonics of RAS; Bauman Moscow State Technical University
Russian Federation

Zhigalina O.M. – Dr. Sci. (Phys.-Math.), Leading research scientist of the Laboratory of electron microscopy; Professor of the Department «Material science»

119333, Russia, Moscow, Leninskii pr., 59

105005, Russia, Moscow, 2-nd Baumanskaya str., 5

 



References

1. Yoshizawa Y., Oguma S., Yamauchi K. New Fe-based soft magnetic alloys composed on ultrathin grain structure. J. Appl. Phys. 1988. Vol. 64. P. 6044—6046.

2. McHenry M.E., Laughlin D.E. Nano-scale materials development for future magnetic applications. Acta Mater. 2000. Vol. 48. P. 223—238.

3. Nago K., Sakakima H., Ihara K. Microstructures and magnetic properties of Fe—(Ta,Nb,Zr)—N alloy films. IEEE Trans. J. Magn. Japan. 1992. Vol. 7. No. 2. P. 119—127.

4. Chakraborty A., Mountfield K.R., Bellesis G.H., Lambeth D.N., Kryder M.H. Search for high moment soft magnetic materials: FeZrN. J. Appl. Phys. 1996. Vol. 80. P. 10—12.

5. Viala B., Minor M.K., Barnard J.A. Microstructure and magnetism in FeTaN films deposited in the nanocrystalline state. J. Appl. Phys. 1996. Vol. 80. P. 39—41.

6. Rask M.T., Longworth L.L. Tungsten and tantalum diffusion barriers for metal-in-gap magnetic heads: Pat. 5001589A (USA). 1991.

7. Bannykh O.A., Sheftel E.N., Kaputkin D.E., Strug R.E., Usmanova G.Sh., Zubov V.E. Report on the contract IMET-Philips PLW-938018-D-WZ-86512. 1995 (In Russ.).

8. Sheftel E.N. Soft magnetic nanocrystalline films of alloys of Fe — refractory interstitial phase for application in devices for magnetic recording. Inorg. Mater.: Appl. Res. 2010. Vol.1. No. 1. P. 17—24.

9. Bannykh O.A., Sheftel’ E.N., Grigorovich V.K., Strug R.E., Mkrtumov A.S., Polyukhova I.R., Evdokimov А.V. Soft magnetic alloy: Pat. 4775860/02 (RF). 1992 (In Russ.).

10. Grigorovich V.K., Sheftel’ E.N., Strug R.E., Polyukhova I.R. Precipitation hardening of a sendust-type alloy by means of boride additives. Izvestia Akademii nauk SSSR. Metally. 1993. No. 6. P. 173—177 (In Russ.).

11. Sheftel E.N., Tedzhetov V.A., Harin E.V., Usmanova G.S., Kiryukhantsev-Korneev F.V. High-induction nanocrystalline soft magnetic FexTiyBz films prepared by magnetron sputtering. Physica Status Solidi C. 2016. Vol. 13. No. 10-12. P. 965—971.

12. Tanaka K., Saito T. Phase equilibria in TiB2-reinforced high modulus steel. J. Phase Equilibria. 1999. Vol. 20. No. 3. P. 207—214.

13. Raghavan V. B—Fe—Ti (boron-iron-titanium). J. Phase Equilibria. 2003. Vol. 24. No. 5. P. 455—456.

14. Levashov E.A., Shtansky D.V., Kiryukhantsev-Korneev Ph.V., Petrzhik M.I., Tyurina M. Ya., Sheveyko A.N. Multifunctional nanostructured coatings: formation, structure, and the uniformity of measuring their mechanical and tribological properties. Russ. Metallurgy (Metally). 2010. Vol. 10. P. 917—935.

15. Shelekhov E.V., Sviridova T.A. Programs for X-ray analysis of polycrystals. Metal Sci. Heat Treatment. 2000. Vol. 42. No. 7-8. P. 309—313.

16. Kitaigorodsky A.I. X-ray structural analysis of fine-crystalline and amorphous solids. Moscow-Leningrad: Gostekhizdat, 1952 (In Russ.).

17. Lyakishev N.P. (Ed.). Phase diagrams of binary metallic systems. Moscow: Mashinostroenie, 1997 (in Russ.).

18. Hume-Rothery W., Raynor G.V. The structure of metals and alloys. London. The Inst. of metals, 1956.

19. Grigorovich V.K. Electronic structure and thermodynamics of iron alloys. Moscow: Nauka, 1970 (In Russ.).

20. Makino A., Yamamoto Y., Hirotsu Y., Inoue A., Masumoto T. Microstructure of nanocrystalline b.c.c. FeMB(MNb,Hf) soft magnetic alloys. Mater. Sci. Eng. 1994. Vol. A179-180. P. 495—500.

21. Makino A., Suzuki K., Inoue A., Hirotsu Y., Masumoto T. Magnetic properties and microstructure of nanocrystalline bcc Fe—M—B (M = Zr, Hf, Nb) alloys. J. Magnetism Magnetic Mater. 1994. Vol. 133. P. 329—333.

22. Makino A., Yoshida S., Masumoto T. Microstructure and magnetic properties of nanocrystalline bcc Fe—Nb—B soft magnetic alloys. IEEE Trans. Magn. 1994. Vol. 30. No. 6. P. 4848—4850.

23. Makino A., Inoue A., Masumoto T. Soft magnetic properties of nanocrystalline Fe—M—B (M = Zr, Hf, Nb) alloys with high magnetization. Nanostr. Mater. 1995. Vol. 6. P. 985—988.

24. Makino A., Inoue A., Masumoto T. Nanocrystalline soft-magnetic Fe—M—B (M = Zr, Hf, Nb) alloys produced by crystallization of amorphous phase. Mater. Trans. JIM. 1995. Vol. 36. No. 7. P. 924—938.

25. Makino A., Hatanai T., Inoue A., Masumoto T. Nanocrystalline soft magnetic Fe—M—B (M = Zr, Hf, Nb) alloys and their applications. Mater. Sci. Eng. 1997. Vol. A226-228. P. 594—602.

26. Makino A., Bitoh T., Kojima A., Inoue A., Masumoto T. Magnetic properties of zero-magnetostrictive nanocrystalline Fe—Zr—Nb—B soft magnetic alloys with high magnetic induction. J. Magnetism Magnetic Mater. 2000. Vol. 215-216. P. 288—292.

27. Makino A., Bitoh T., Kojima A., Inoue A., Masumoto T. Compositional dependence of the soft magnetic properties of the nanocrystalline Fe—Zr—Nb—B alloys with high magnetic flux density. J. Appl. Phys. 2000. Vol. 87. No. 9. P. 7100—7102.

28. Gorshenkov M.V., Glezer A.M., Korchuganova O.A., Aleev A.A., Shurygina N.A. Effect of γ-(Fe,Ni) crystal-size stabilization in Fe—Ni—B amorphous ribbon. Phys. Metals Metallogr. 2017. Vol. 118. No. 2. P. 176—182.

29. Rickerby D.S. Lattice parameters of iron-titanium solid solutions. Metal Sci. 1982. Vol. 16. No. 10. P. 495—496.

30. Hwang J.W. Thermal expansion of nickel and iron, and the influence of nitrogen on the lattice parameter of iron at the Curie temperature: Masters Thesis. 1972. P. 49—50.

31. Senkov O.N., Chakoumakos B.C., Jonas J.J., Froes F.H. Effect of temperature and hydrogen concentration on the lattice parameter of beta titanium. Mater. Res. Bull. 2001. Vol. 36. P. 1431—1440.

32. Rickerby D.S., Jones A.M., Bellamy B.A. X-ray diffraction studies of physically vapour-deposited coatings. Surf. Coat. Technol. 1989. Vol. 37. No. 1. P. 111—137.

33. Vaz F., Rebouta L., Goudeau Ph., Girardeau T., Pacaud J., Riviére J.P., Traverse A. Structural transitions in hard Si-based TiN coatings: The effect of bias voltage and temperature. Surf. Coat. Technol. 2001. Vol. 146-147. P. 274—279.


Review

For citations:


Sheftel E.N., Tedzhetov V.A., Kiryukhantsev-Korneev P.V., Harin E.V., Usmanova G.Sh., Zhigalina O.M. Investigation of the processes of the formation of a nonequilibrium phase-structural state in FeTiB films obtained by magnetron sputtering. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2020;(3):65-75. (In Russ.) https://doi.org/10.17073/1997-308X-2020-3-65-75

Views: 575


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)