Preparation of CuCr pseudo-alloys by deposition of copper from a solution onto chromium powders with simultaneous mechanical activation of the mixture
https://doi.org/10.17073/1997-308X-2020-4-14-21
Abstract
About the Authors
S. G. VadchenkoRussian Federation
Cand. Sci. (Phys.-Math.), leading researcher of Laboratory of dynamics of microheterogeneous processes
142432, Moscow region, Noginsk district, Chernogolovka, Academician Osip’yan str., 8
E. V. Suvorova
Russian Federation
Engineer, Laboratory of dynamics of microheterogeneous processes
142432, Moscow region, Noginsk district, Chernogolovka, Academician Osip’yan str., 8
N. I. Mukhina
Russian Federation
Technologist, Laboratory of materials science
142432, Moscow region, Noginsk district, Chernogolovka, Academician Osip’yan str., 8
I. D. Kovalev
Russian Federation
Cand. Sci. (Phys.-Math.), researcher, Laboratory of X-ray investigation
142432, Moscow region, Noginsk district, Chernogolovka, Academician Osip’yan str., 8
E. V. Illarionova
Russian Federation
Research engineer, Laboratory of dynamics of microheterogeneous processes
142432, Moscow region, Noginsk district, Chernogolovka, Academician Osip’yan str., 8
References
1. Kojima H., Nishimura R., Okudo H., Sato H., Saito H., Noda Y. Conditioning mechanism of Cu—Cr electrode based on electrode surface state under impulse voltage in vacuum. IEEE Trans. Dielectr. Electr. Insul. 2011. Vol. 18. No. 6. P. 2108—2114. DOI: 10.1109/TDEI.2011.6118651.
2. Zhang C., Yang Z., Wang Y., Ding B. Properties of nanocrystalline CuCr50 contact material. Adv. Eng. Mater. 2005. Vol. 7. No. 12. P. 1114—1117. DOI: 10.1002/adem.200500139.
3. Shkodich N.F., Rogachev A.S., Vadchenko S.G., Moskovskikh D.O., Sachkova N.V., Rouvimov S., Mukasyan A.S. Bulk Cu—Cr nanocomposites by high-energy ball milling and spark plasma sintering. J. Alloys Compd. 2014. Vol. 617. P. 39—46. http://dx.doi.org/10.1016/j.jallcom.2014.07.133.
4. Chang S.-H., Chen S.-H., Huang K.-T., Liang C. Improvement in sintering characteristics and electrical properties of Cr60Cu40 alloy targets by hot isostatic pressing treatment. Powder Metall. 2013. Vol. 56. No. 1. P. 77—82. DOI: 10.1179/1743290112Y.0000000038.
5. Dobatkin S.V., Gubicza J., Shangina D.V., Bochvar N.R., Tabachkova N.Y. High strength and good electrical conductivity in Cu—Cr alloys processed by severe plastic deformation. Mater. Lett. 2015 Vol. 153. P. 5—9. http://dx.doi.org/10.1016/j.matlet.2015.03.144.
6. Zhang C., Yang Z., Wang Y., Ding B., Guo Y. Preparation of CuCr25 contact materials by vacuum induction melting. J. Mater. Process. Technol. 2006. Vol. 178. P. 283—286. https://doi.org/10.1016/j.jmatprotec.2006.04.010.
7. Dirks A.G., Van den Broek J.J. Metastable solid solutions in vapor deposited Cu—Cr, Cu—Mo, and Cu—W thin films. J. Vac. Sci. Technol. 1985. Vol. A3. P. 2618—2622. https://doi.org/10.1116/1.572799.
8. Cherdyntsev V.V., Kaloshkin S.D., Serdyukov V.N., Tomilin N.A., Shelekhov E.V. Kinetics of mechanical alloying in the immiscible system Cu50Cr50. Fizika metallov i metallovedenie. 2004. Vol. 97. No. 4. P. 71—78 (In Russ.).
9. Rogachev A.S., Kuskov K.V., Moskovskikh D.O., Usenko A.A., Orlov A.O., Shkodich N.F., Alymov M.I., Mukasyan A.S. Effect of mechanical activation on thermal and electrical conductivity of sintered Cu, Cr, and Cu/Cr composite powders. Dokl. Phys. 2016. Vol. 61. P. 257—260. DOI: 10.1134/S1028335816060082.
10. Fang Q., Kang Z., Gan Y., Long Y. Microstructures and mechanical properties of spark plasma sintered Cu— Cr composites prepared by mechanical milling and alloying. Mater. Des. 2015. Vol. 88. P. 8—15. https://doi.org/10.1016/j.matdes.2015.08.127.
11. Fang Q., Kang Z. An investigation on morphology and structure of Cu—Cr alloy powders prepared by mechanical milling and alloying. Powder Technol. Ser. A. 2015. Vol. 270. P. 104—111. DOI: 10.1016/j.powtec.2014.10.010.
12. Patra S., Mondal K. Densification behavior of mechanically milled Cu—8 at % Cr alloy and its mechanical and electrical properties. Prog. Nat. Sci. Mater. Int. 2014. Vol. 24. P. 608—622. https://doi.org/10.1016/j.pnsc.2014.10.006.
13. Song-Hua Si, Hui Zhang, Yi-Zhu He, Ming-Xi Li, Sheng Guo. Liquid phase separation and the aging effect on mechanical and electrical properties of laser rapidly solidified Cu100–xCrx alloys. Metals. 2015. No. 5. P. 2119— 2127. DOI: 10.3390/met5042119.
14. Chai Lin Jiang, Zhou Zhi Ming, Xiao Zhi Pei, Tu Jian, Wang Ya Ping, Huang WeiJiu. Evolution of surface microstructure of Cu—50Cr alloy treated by high current pulsed electron beam. Sci. China. Tech. Sci. 2015. Vol. 58. P. 462—469. DOI: 10.1007/s11431-015-5774-7.
15. Rogachev A.S., Kuskov K.V., Shkodich N.F., Moskovskikh D.O., Orlov A.O., Usenko A.A., Karpov A.V., Kovalev I.D., Mukasyan A.S. Influence of high-energy ball milling on electrical resistance of Cu and Cu/Cr nanocomposite materials produced by Spark Plasma Sintering. J. Alloys Compd. 2016. Vol. 688. P. 468—474. http://dx.doi.org/10.1016/j.jallcom.2016.07.061.
16. Kuskov K.V., Sedegov A.S., Novitskii A.P., Nepapushev A.A., Moskovskikh D.O., Shkodich N.F., Rogachev A.S., Mukasyan A.S. Influence of chromium in nanocrystalline copper—chromium pseudoalloy on its structure and properties. Nanotechnologies in Russia. 2017. Vol. 12. Iss. 1—2. P. 40—48. DOI: 10.1134/S1995078017010074.
17. Weichan C., Shuhua L., Xiao Z., Xianhui W., Xiaohong Y. Effect of Mo addition on microstructure and vacuum arc characteristics of CuCr50 alloy. Vacuum. 2011. Vol. 85. P. 943—948. DOI: 10.1016/j.vacuum.2011.02.001.
18. Sheibani S., Heshmati-Manesh S., Ataie A. Influence of Al2O3 nanoparticles on solubility extension of Cr in Cu by mechanical alloying. Acta Mater. 2010. Vol. 58. P. 6828—6834. https://doi.org/10.1016/j.actamat.2010.09.012.
19. Yang Z., Zhang Q., Zhang Ch., Sun Y., Ding B. Influence of microstructure of CuCr25 cathode on the motion of vacuum arc spots. Phys. Lett. 2006. Vol. A 353. P. 98—100. DOI: 10.1016/j.physleta.2005.12.023.
20. Vadchenko S.G., Boyarchenko O.D., Shkodich N.F., Rogachev A.S. Thermal explosion in various Ni—Al systems: Effect of mechanical activation. Int. J. SHS. 2013. Vol. 22. No. 1. P. 60—64. DOI: 10.3103/S1061386213010123.
21. Hiroaki Okamoto. Desk handbook — Phase diagrams for binary alloys. 2-nd ed. Ed. ASM Int. Mater. Park. Ohio. USA. 2010. P. 276. 44073-0002. www.asminternational.org.
22. Aleksandrov V.D., Aleksandrova V.N., Barannikov A.A., Dobritsa N.V., Malinovskaya N.E., Frolova S.A. Melting and crystallization of copper, silver, and gold droplets. Tech. Phys. Lett. 2001. Vol. 27. Iss. 3. P. 258—259. https://doi.org/10.1134/1.1359845.
23. Gao J., Wang Y.P., Zhou Z.M., Kolbe M. Phase separation in undercooled Cu—Cr melts. Mater. Sci. Eng. 2007. Vol. A. No. 449—451. P. 654—657. DOI: 10.1016/j.msea2006.02.379.
24. Zhiming Zhou, Tao Zhou, Linjiang Chai, Jian Tu. Microstructure and liquid phase separation of CuCr alloys treated by high current pulsed electron beam. Mater. Res. 2015. Vol. 18. Suppl. 1. São Carlos Nov. Epub. Oct. 23. 2015. http://dx.doi.org/10.1590/1516-1439.323714.
25. Wang Y., Song X., Sun Z., Zhou X., Guo J. The solidification of CuCr alloys under various cooling rates. Mater. Sci. Poland. 2007. Vol. 25. No. 1. P. 199—207. https://doi.org/10.1016/S1003-6326(06)60367-1.
26. Hauf U., Kauffmann A., Kauffmann-Weiss S., Feilbach A., Boening M., Mueller F.E.H., Hinrichsen V., Heilmaier M. Microstructure formation and resistivity change in CuCr during rapid solidification. Metals. 2017. Vol. 7. Iss. 11. P. 478. DOI:10.3390/met7110478.
27. Sheibani S., Heshmati-Manesh S., Ataie A. Synthesis of nano-crystalline Cu—Cr alloy by mechanical alloying. Int. J. Modern Phys. Conf. Ser. 2012. Vol. 5. P. 496—501. DOI: 10.1142/S2010194512002395.
Review
For citations:
Vadchenko S.G., Suvorova E.V., Mukhina N.I., Kovalev I.D., Illarionova E.V. Preparation of CuCr pseudo-alloys by deposition of copper from a solution onto chromium powders with simultaneous mechanical activation of the mixture. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2020;(4):14-21. (In Russ.) https://doi.org/10.17073/1997-308X-2020-4-14-21